Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence of early leaf removal on the yield and composition of the grape of three white varieties in the D.O.Ca.Rioja (Spain)

Influence of early leaf removal on the yield and composition of the grape of three white varieties in the D.O.Ca.Rioja (Spain)

Abstract

AIM: Defoliation is one of the green operations more used in viticulture, whose results can be very different depending on the variety and the moment of realization. Early leaf removal consists of the elimination of basal leaves on the shoots around pre-bloom stage, which limits fruit set and initial growth of the berry, leading to less compact clusters and less weight [1]. This practice allows to control the yield, improve the sanitary state and consequently the quality of the grape [2]. The objective of this research was to evaluate the influence of early leaf removal on the yield and composition in the grape of three white varieties: Tempranillo Blanco, Maturana Blanca and Garnacha Blanca.

METHODS: This study was conducted during the 2019 season, in a vineyard located in the D.O.Ca. Rioja (Spain). At the moment of harvest, the influence of early leaf removal on different yield components (unit production, number of bunches per vine, bunch weight, weight of 100 berries and number of berries per bunch) was determined. Prior to the harvest, 500 berries were sampled for each repetition and the must was extracted. Musts were physicochemically characterized by determining probable alcohol, pH, total acidity, tartaric acid, malic acid, potassium and total polyphenols.

RESULTS: The results obtained showed notable varietal differences. The early leaf removal gave rise to a decrease in the yield components, which only were significant in Tempranillo Blanco for the unit production, bunch weight and number of berries per bunch. Also, the effects of leaf removal on the composition of the grape were higher in Tempranillo Blanco. The total polyphenol content increased significantly in the three varieties. Maturana Blanca presented a significant rise in total acidity. On the contrary, Tempranillo Blanco showed a significant decrease, significantly increasing the pH and potassium. The probable alcohol showed a significant increase in Tempranillo Blanco and Garnacha Blanca.

CONCLUSIONS

To conclude, the influence of early leaf removal on the yield and composition of the grape is variable depending on the variety.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Laura, Alti-Palacios

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja),Sara, GARCÍA, Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja) Juana, MARTÍNEZ, Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja)

Contact the author

Keywords

early leaf removal, yield components, chemical composition, white grape

Citation

Related articles…

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.