Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Abstract

AIM: In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles. During late ripening, Shiraz mesocarp cells die within the central region of the berry. The cessation of K+ import may be a contributing factor to this loss in cell vitality. Many K+ trans-membrane transporters and channels are regulated by the membrane voltage (Vm). We thus measured trans-membrane voltage (Vm) and trans-tissue voltages (Vt) in the mesocarp during Shiraz berry development.

METHODS: Vm measurement Shiraz berries, grown in Coombe vineyard at the University of Adelaide, were sampled weekly from the completion of véraison to the late-ripening stage. To assess Vm, the microelectrode was inserted through the berry skin and into mesocarp. During injection, voltage signals and the corresponding depths of the micropipette tip were recorded. Vt measurement The Vt was measured by a similar method described above without micropipette injection. A small piece of skin was removed, allowing the measurement of Vt from the pedicel to the mesocarp surface. Living berries and dead berries from véraison and late-ripening stage were used. Dead berries were measured after freezing overnight followed by thawing.

RESULTS: Vm The voltages became less negative with increasing tissue depth. This may be attributed to the more severe hypoxia within deeper regions of the berry2. Voltage responses were detected in both living berries and dead berries in the late-ripening stage, with similar profiles. This indicates that other structures or factors contributed to the voltage detected by this method. Vt In living berries, the Vt values were more negative in véraison berries than those in late-ripening berries. This trend was not observed in dead berries. There was no significant difference between the Vt values measured from living berries and dead berries in late-ripening stage.

CONCLUSIONS

The uneven distribution of the Vm between berry compartments may be correlated with oxygen concentration, which could impact on K+ transport within berries. The declined Vm and Vt in the late ripening berries could be associated with the cessation of K+ import into berries.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yin Liu 

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia,Suzy ROGIERS (New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia) Leigh SCHMIDTKE (National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia) Stephen TYERMAN (School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia)

Contact the author

Keywords

grape berry ripening, microelectrode, voltage, mesocarp

Citation

Related articles…

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).