Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Abstract

AIM: In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles. During late ripening, Shiraz mesocarp cells die within the central region of the berry. The cessation of K+ import may be a contributing factor to this loss in cell vitality. Many K+ trans-membrane transporters and channels are regulated by the membrane voltage (Vm). We thus measured trans-membrane voltage (Vm) and trans-tissue voltages (Vt) in the mesocarp during Shiraz berry development.

METHODS: Vm measurement Shiraz berries, grown in Coombe vineyard at the University of Adelaide, were sampled weekly from the completion of véraison to the late-ripening stage. To assess Vm, the microelectrode was inserted through the berry skin and into mesocarp. During injection, voltage signals and the corresponding depths of the micropipette tip were recorded. Vt measurement The Vt was measured by a similar method described above without micropipette injection. A small piece of skin was removed, allowing the measurement of Vt from the pedicel to the mesocarp surface. Living berries and dead berries from véraison and late-ripening stage were used. Dead berries were measured after freezing overnight followed by thawing.

RESULTS: Vm The voltages became less negative with increasing tissue depth. This may be attributed to the more severe hypoxia within deeper regions of the berry2. Voltage responses were detected in both living berries and dead berries in the late-ripening stage, with similar profiles. This indicates that other structures or factors contributed to the voltage detected by this method. Vt In living berries, the Vt values were more negative in véraison berries than those in late-ripening berries. This trend was not observed in dead berries. There was no significant difference between the Vt values measured from living berries and dead berries in late-ripening stage.

CONCLUSIONS

The uneven distribution of the Vm between berry compartments may be correlated with oxygen concentration, which could impact on K+ transport within berries. The declined Vm and Vt in the late ripening berries could be associated with the cessation of K+ import into berries.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yin Liu 

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia,Suzy ROGIERS (New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia) Leigh SCHMIDTKE (National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia) Stephen TYERMAN (School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia)

Contact the author

Keywords

grape berry ripening, microelectrode, voltage, mesocarp

Citation

Related articles…

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.