Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

Abstract

In a context of a sustainable viticulture, a new uprising strategy to improve grape and wine composition (or quality) is the exogenous application of plant activators(Gil-Muñoz et al., 2017). This treatment stimulates the biosynthesis of secondary metabolites in grape berries (Ruiz-García et al., 2013) In an open field, the plant hormone (Abscisic Acid), was applied on a red grape variety Mouhtaro cultivated at the Muses Valley (Askri, Viotia, Greece). Treatments were in triplicates during veraison in a randomized complete block design, with 10 vines in each replicate. Vines were sprayed at veraison stage, 3 and 6 days after the first application, at 2 different concentrations and grapes were harvested at optimum sugar maturity. Targeted UPLC-MS analysis was performed since It was suggested that exogenous ABA influence specific polyphenolic compounds. Then, classic red winemaking procedure was applied. The effect of exogenous ABA application on gene expression level was also examined. Standard analytical methods recommended by O.I.V. were used for grapes and wines as well as analysis for the phenolic composition. The pH increased in wines originated from grape berries treated with higher doses. Accordingly, phenolic compounds were higher in ABA-treated grapes and respective wines Similarly, the expression of specific genes encoding for key enzymes of the phenylpropanoid pathway was upregulated. As a consequence, Abscisic Acid affected the composition and sensory analysis of the wines differently. The unique wine profiles of Mouhtaro and their different responses to biostimulant factors could be valuable for developing various types of Mouhtaro red wines with improved quality

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kontoudakis Nikolaos1,; Aggeliki Kouki1; Zacharias Nikolaos4; Alatzas Anastasios2; Chatzopoulos Polydeykis2; Marianne Unlubayir3, Arnaud Lanoue3; Kotseridis Yorgos1

  1. Agricultural University of Athens, Department of Food Science and Human Nutrition, Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Enology and Alcoholic Drinks, 75 IeraOdos, 11855 Athens, Greece
  2. Agricultural University of Athens, Department of Biotechnology, Molecular Biology Laboratory, 75 IeraOdos, 11855 Athens, Greece
  3. Université François-Rabelais de Tours, EA 2106 «Biomolécules et BiotechnologieVégétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200 Tours, France
  4. Muses Estate, Askri Viotias, 32002, Greece

Contact the author

Keywords

vitis vinifera, mouhtaro, wine, gene expression, absiscic acid, grape berry, polyphenolic profile

Citation

Related articles…

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.