Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Abstract

AIM: This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

METHODS: This study was carried out in 2018 and 2019. The plot was located in the North of Spain. The grapes were Vitis vinifera L. Tempranillo and grafted on 110 Richter rootstocks. The vine-training system was gobelet and leave twelve buds per vine. The plot was not fertilized and not irrigated, during the two study seasons. The treatments were: control (C), whose plants were sprayed with water; and three different doses of urea: plants were sprayed with 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The treatments were performed at two different phenological states, pre-veraison (Pre) and veraison (Ver). Also, each treatment was repeated one week later. The applications were carried out early in the morning to maximize the absorption of urea. Treatments were organized in a complete randomised block design and were performed in triplicate. The grapes were picked at optimum maturity and then, were destemmed and crushed. Each treatment was fermented on stainless steel tanks. The alcoholic fermentation was started by inoculating with commercial Saccharomyces cerevisiae strain Uvaferm VRB and the malolactic fermentation was inoculated with commercial Oenococcus oeni strain Lalvin SILKA. After malolactic fermentation, the aliquots of each wine were frozen to determine their volatile composition. Analysis of volatile compounds from the wine was carried out by gas chromatography–mass spectrometry (GC-MS) [1]. Quantification of compounds was performed with an internal standard method. Finally, the results were studied statistically by analysis of variance (ANOVA).

RESULTS: In the two seasons, the higher alcohols were the most abundant fermentative compounds found in wines, highlighting isoamyl alcohols and 2-phenylethanol. In 2018, the content of all volatile compounds was increased by the treatment U3-Pre. Nevertheless, the treatments carried out in veraison had different effects. The acetate esters and the sum of ethyl hexanoate, octanoate and decanoate were increased by U9 treatment. Also, U6 increased the concentration of total ethyl esters, total esters, and other volatile compounds. However, the higher alcohols were lower in the all treated wines. In 2019, the wines elaborated from grapes treated with U3-Pre presented a higher concentration of aromatic compounds. Moreover, U3-Ver improved the content of alcohols, acetate esters, the sum of ethyl hexanoate, octanoate and decanoate, and total esters; while, the other volatile compounds were risen by U9-Ver.

CONCLUSIONS

In the two seasons, the lowest dose of urea (U3) applied in pre-veraison improved the aromatic composition of Tempranillo wine.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rebeca Murillo-Peña

Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja) ,Teresa, GARDE-CERDÁN, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)  José María, MARTÍNEZ-VIDAURRE, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)

Contact the author

Keywords

pre-veraison, veraison, tempranillo, volatile compounds, wine, urea, foliar application

Citation

Related articles…

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

How do KOCs influence wine consumers’ decisions? Based on NLP analysis and questionnaire surveys on Xiaohongshu

In China’s social media-driven marketing landscape, user-generated content (UGC) plays a pivotal role in brand communication and consumer decision-making.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Anthocyanins, flavonols and hydroxycinnamates of eight vitis vinifera cultivars from the balearic islands

In 2008 the anthocyanin, flavonol and hydroxycinnamate (HCT) contents of the skins of five coloured berry cultivars (‘Escursac’, ‘Esperó de Gall’, ‘Galmeter’, ‘Valent negre’ and ‘Vinater negre’), of two white cultivars (‘Argamussa’ and ‘Prensal blanc’) and of one weakly rose cultivar (‘Giró ros’), native from Balearic Islands, were characterized.