Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Abstract

AIM: This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

METHODS: This study was carried out in 2018 and 2019. The plot was located in the North of Spain. The grapes were Vitis vinifera L. Tempranillo and grafted on 110 Richter rootstocks. The vine-training system was gobelet and leave twelve buds per vine. The plot was not fertilized and not irrigated, during the two study seasons. The treatments were: control (C), whose plants were sprayed with water; and three different doses of urea: plants were sprayed with 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The treatments were performed at two different phenological states, pre-veraison (Pre) and veraison (Ver). Also, each treatment was repeated one week later. The applications were carried out early in the morning to maximize the absorption of urea. Treatments were organized in a complete randomised block design and were performed in triplicate. The grapes were picked at optimum maturity and then, were destemmed and crushed. Each treatment was fermented on stainless steel tanks. The alcoholic fermentation was started by inoculating with commercial Saccharomyces cerevisiae strain Uvaferm VRB and the malolactic fermentation was inoculated with commercial Oenococcus oeni strain Lalvin SILKA. After malolactic fermentation, the aliquots of each wine were frozen to determine their volatile composition. Analysis of volatile compounds from the wine was carried out by gas chromatography–mass spectrometry (GC-MS) [1]. Quantification of compounds was performed with an internal standard method. Finally, the results were studied statistically by analysis of variance (ANOVA).

RESULTS: In the two seasons, the higher alcohols were the most abundant fermentative compounds found in wines, highlighting isoamyl alcohols and 2-phenylethanol. In 2018, the content of all volatile compounds was increased by the treatment U3-Pre. Nevertheless, the treatments carried out in veraison had different effects. The acetate esters and the sum of ethyl hexanoate, octanoate and decanoate were increased by U9 treatment. Also, U6 increased the concentration of total ethyl esters, total esters, and other volatile compounds. However, the higher alcohols were lower in the all treated wines. In 2019, the wines elaborated from grapes treated with U3-Pre presented a higher concentration of aromatic compounds. Moreover, U3-Ver improved the content of alcohols, acetate esters, the sum of ethyl hexanoate, octanoate and decanoate, and total esters; while, the other volatile compounds were risen by U9-Ver.

CONCLUSIONS

In the two seasons, the lowest dose of urea (U3) applied in pre-veraison improved the aromatic composition of Tempranillo wine.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rebeca Murillo-Peña

Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja) ,Teresa, GARDE-CERDÁN, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)  José María, MARTÍNEZ-VIDAURRE, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)

Contact the author

Keywords

pre-veraison, veraison, tempranillo, volatile compounds, wine, urea, foliar application

Citation

Related articles…

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region.

Grapevine downy mildew development as affected by chitosan spray treatments and metabolomics implications

Chitosan has been shown to enhance grapevine tolerance toward downy mildew while reducing the environmental impact of traditional protection products.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.