Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Abstract

AIM: This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

METHODS: This study was carried out in 2018 and 2019. The plot was located in the North of Spain. The grapes were Vitis vinifera L. Tempranillo and grafted on 110 Richter rootstocks. The vine-training system was gobelet and leave twelve buds per vine. The plot was not fertilized and not irrigated, during the two study seasons. The treatments were: control (C), whose plants were sprayed with water; and three different doses of urea: plants were sprayed with 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The treatments were performed at two different phenological states, pre-veraison (Pre) and veraison (Ver). Also, each treatment was repeated one week later. The applications were carried out early in the morning to maximize the absorption of urea. Treatments were organized in a complete randomised block design and were performed in triplicate. The grapes were picked at optimum maturity and then, were destemmed and crushed. Each treatment was fermented on stainless steel tanks. The alcoholic fermentation was started by inoculating with commercial Saccharomyces cerevisiae strain Uvaferm VRB and the malolactic fermentation was inoculated with commercial Oenococcus oeni strain Lalvin SILKA. After malolactic fermentation, the aliquots of each wine were frozen to determine their volatile composition. Analysis of volatile compounds from the wine was carried out by gas chromatography–mass spectrometry (GC-MS) [1]. Quantification of compounds was performed with an internal standard method. Finally, the results were studied statistically by analysis of variance (ANOVA).

RESULTS: In the two seasons, the higher alcohols were the most abundant fermentative compounds found in wines, highlighting isoamyl alcohols and 2-phenylethanol. In 2018, the content of all volatile compounds was increased by the treatment U3-Pre. Nevertheless, the treatments carried out in veraison had different effects. The acetate esters and the sum of ethyl hexanoate, octanoate and decanoate were increased by U9 treatment. Also, U6 increased the concentration of total ethyl esters, total esters, and other volatile compounds. However, the higher alcohols were lower in the all treated wines. In 2019, the wines elaborated from grapes treated with U3-Pre presented a higher concentration of aromatic compounds. Moreover, U3-Ver improved the content of alcohols, acetate esters, the sum of ethyl hexanoate, octanoate and decanoate, and total esters; while, the other volatile compounds were risen by U9-Ver.

CONCLUSIONS

In the two seasons, the lowest dose of urea (U3) applied in pre-veraison improved the aromatic composition of Tempranillo wine.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rebeca Murillo-Peña

Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja) ,Teresa, GARDE-CERDÁN, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)  José María, MARTÍNEZ-VIDAURRE, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)

Contact the author

Keywords

pre-veraison, veraison, tempranillo, volatile compounds, wine, urea, foliar application

Citation

Related articles…

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Previous work from our laboratory has shown that both a purified toasted oak powder and extracts made from unoaked and oaked red wines influenced physiological parameters, metabolism and hepatic gene expression in high-fat fed C57/BL6J male mice (Luo et al., 2020).  Impacted pathways included glucose metabolism, liver fat accumulation, markers of chronic inflammation, and expression of the Gsta1 mRNA.  

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.