Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

Abstract

AIM: This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

METHODS: This study was carried out in 2018 and 2019. The plot was located in the North of Spain. The grapes were Vitis vinifera L. Tempranillo and grafted on 110 Richter rootstocks. The vine-training system was gobelet and leave twelve buds per vine. The plot was not fertilized and not irrigated, during the two study seasons. The treatments were: control (C), whose plants were sprayed with water; and three different doses of urea: plants were sprayed with 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The treatments were performed at two different phenological states, pre-veraison (Pre) and veraison (Ver). Also, each treatment was repeated one week later. The applications were carried out early in the morning to maximize the absorption of urea. Treatments were organized in a complete randomised block design and were performed in triplicate. The grapes were picked at optimum maturity and then, were destemmed and crushed. Each treatment was fermented on stainless steel tanks. The alcoholic fermentation was started by inoculating with commercial Saccharomyces cerevisiae strain Uvaferm VRB and the malolactic fermentation was inoculated with commercial Oenococcus oeni strain Lalvin SILKA. After malolactic fermentation, the aliquots of each wine were frozen to determine their volatile composition. Analysis of volatile compounds from the wine was carried out by gas chromatography–mass spectrometry (GC-MS) [1]. Quantification of compounds was performed with an internal standard method. Finally, the results were studied statistically by analysis of variance (ANOVA).

RESULTS: In the two seasons, the higher alcohols were the most abundant fermentative compounds found in wines, highlighting isoamyl alcohols and 2-phenylethanol. In 2018, the content of all volatile compounds was increased by the treatment U3-Pre. Nevertheless, the treatments carried out in veraison had different effects. The acetate esters and the sum of ethyl hexanoate, octanoate and decanoate were increased by U9 treatment. Also, U6 increased the concentration of total ethyl esters, total esters, and other volatile compounds. However, the higher alcohols were lower in the all treated wines. In 2019, the wines elaborated from grapes treated with U3-Pre presented a higher concentration of aromatic compounds. Moreover, U3-Ver improved the content of alcohols, acetate esters, the sum of ethyl hexanoate, octanoate and decanoate, and total esters; while, the other volatile compounds were risen by U9-Ver.

CONCLUSIONS

In the two seasons, the lowest dose of urea (U3) applied in pre-veraison improved the aromatic composition of Tempranillo wine.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rebeca Murillo-Peña

Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja) ,Teresa, GARDE-CERDÁN, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)  José María, MARTÍNEZ-VIDAURRE, Institute of Grapevine and Wine Sciences (Spanish National Research Council, Government of La Rioja, University of La Rioja)

Contact the author

Keywords

pre-veraison, veraison, tempranillo, volatile compounds, wine, urea, foliar application

Citation

Related articles…

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.