Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Sensory and chemical phenotyping of wines from a F1 grapevine population

Sensory and chemical phenotyping of wines from a F1 grapevine population

Abstract

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU, compared to other crops such as grains. In order to achieve the ambitious target of 50% pesticide reduction in viticulture, the increased cultivation of new pathogen-resistant grape varieties is indispensable. New pathogen-resistant grape varieties, which have been selected for their high quality potential, allow up to 80% less fungicide use. These varieties are therefore an important building block in the transformation process to more sustainable viticulture. The project Predictive Breeding for Wine Quality »SelWineQ« (Select Wine Quality) focuses on the development of robust predictive models for the genetic quality potential (GQP) of grapevine varieties during the breeding process based on sensory, metabolomic, and genomic data. Predictive models for wine quality traits will considerably increase the efficiency of grapevine breeding. The centerpiece of the “SelWineQ” project is an F1 breeding population of Calardis Musqué and Villiard blanc consisting of 150 genotypes (8 vines each). Over three vintages experimental wines of each genotype were made. Every year a professional trained panel evaluated the wines of all genotypes. This sensory evaluation forms a broad data basis for modeling sensory quality traits from genetic and metabolic data. One of the most important results from the sensory evaluation is the “Total Quality Score”, a sum parameter for the olfactory and gustatory total quality of the wines. This quality parameter was found to be constant for the best and worst wines of the breeding population over several years. Thus, the best and worst wines could be reproducibly identified. This result shows, besides an excellent panel performance, that the quality potential is mainly determined by the genetic properties of the plants and that environmental influences (different vintages) are less important. The combination of analytical data and data from the sensory evaluation facilitated the identification of linalool and cis-rose oxide (among other terpenoids) as molecular quality markers. These aroma-active compounds were present in the best evaluated wines far above their olfactory threshold and showed a high correlation (r > 0.7 Pearson) with the attribute “floral”. Moreover, metabolomic data from non-targeted LC-HRMS and GC-MS analysis allowed predictions of the best and worst genotypes from one to the other vintage (model building on one vintage, validation on another vintage). These findings form a solid base for the development, improvement and validation of predictive models based on genetic data. A novel genotyping by sequencing approach lead to a full informative genetic map of the breeding population based on SNP markers.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jochen Vestner

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany. ,Ulrich Fischer, Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany.

Contact the author

Keywords

pathogen-resistant, grape varieties ,molecular markers, genetics, sensory, aroma, breeding

Citation

Related articles…

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.