Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Sensory and chemical phenotyping of wines from a F1 grapevine population

Sensory and chemical phenotyping of wines from a F1 grapevine population

Abstract

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU, compared to other crops such as grains. In order to achieve the ambitious target of 50% pesticide reduction in viticulture, the increased cultivation of new pathogen-resistant grape varieties is indispensable. New pathogen-resistant grape varieties, which have been selected for their high quality potential, allow up to 80% less fungicide use. These varieties are therefore an important building block in the transformation process to more sustainable viticulture. The project Predictive Breeding for Wine Quality »SelWineQ« (Select Wine Quality) focuses on the development of robust predictive models for the genetic quality potential (GQP) of grapevine varieties during the breeding process based on sensory, metabolomic, and genomic data. Predictive models for wine quality traits will considerably increase the efficiency of grapevine breeding. The centerpiece of the “SelWineQ” project is an F1 breeding population of Calardis Musqué and Villiard blanc consisting of 150 genotypes (8 vines each). Over three vintages experimental wines of each genotype were made. Every year a professional trained panel evaluated the wines of all genotypes. This sensory evaluation forms a broad data basis for modeling sensory quality traits from genetic and metabolic data. One of the most important results from the sensory evaluation is the “Total Quality Score”, a sum parameter for the olfactory and gustatory total quality of the wines. This quality parameter was found to be constant for the best and worst wines of the breeding population over several years. Thus, the best and worst wines could be reproducibly identified. This result shows, besides an excellent panel performance, that the quality potential is mainly determined by the genetic properties of the plants and that environmental influences (different vintages) are less important. The combination of analytical data and data from the sensory evaluation facilitated the identification of linalool and cis-rose oxide (among other terpenoids) as molecular quality markers. These aroma-active compounds were present in the best evaluated wines far above their olfactory threshold and showed a high correlation (r > 0.7 Pearson) with the attribute “floral”. Moreover, metabolomic data from non-targeted LC-HRMS and GC-MS analysis allowed predictions of the best and worst genotypes from one to the other vintage (model building on one vintage, validation on another vintage). These findings form a solid base for the development, improvement and validation of predictive models based on genetic data. A novel genotyping by sequencing approach lead to a full informative genetic map of the breeding population based on SNP markers.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jochen Vestner

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany. ,Ulrich Fischer, Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany.

Contact the author

Keywords

pathogen-resistant, grape varieties ,molecular markers, genetics, sensory, aroma, breeding

Citation

Related articles…

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance