Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Sensory and chemical phenotyping of wines from a F1 grapevine population

Sensory and chemical phenotyping of wines from a F1 grapevine population

Abstract

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU, compared to other crops such as grains. In order to achieve the ambitious target of 50% pesticide reduction in viticulture, the increased cultivation of new pathogen-resistant grape varieties is indispensable. New pathogen-resistant grape varieties, which have been selected for their high quality potential, allow up to 80% less fungicide use. These varieties are therefore an important building block in the transformation process to more sustainable viticulture. The project Predictive Breeding for Wine Quality »SelWineQ« (Select Wine Quality) focuses on the development of robust predictive models for the genetic quality potential (GQP) of grapevine varieties during the breeding process based on sensory, metabolomic, and genomic data. Predictive models for wine quality traits will considerably increase the efficiency of grapevine breeding. The centerpiece of the “SelWineQ” project is an F1 breeding population of Calardis Musqué and Villiard blanc consisting of 150 genotypes (8 vines each). Over three vintages experimental wines of each genotype were made. Every year a professional trained panel evaluated the wines of all genotypes. This sensory evaluation forms a broad data basis for modeling sensory quality traits from genetic and metabolic data. One of the most important results from the sensory evaluation is the “Total Quality Score”, a sum parameter for the olfactory and gustatory total quality of the wines. This quality parameter was found to be constant for the best and worst wines of the breeding population over several years. Thus, the best and worst wines could be reproducibly identified. This result shows, besides an excellent panel performance, that the quality potential is mainly determined by the genetic properties of the plants and that environmental influences (different vintages) are less important. The combination of analytical data and data from the sensory evaluation facilitated the identification of linalool and cis-rose oxide (among other terpenoids) as molecular quality markers. These aroma-active compounds were present in the best evaluated wines far above their olfactory threshold and showed a high correlation (r > 0.7 Pearson) with the attribute “floral”. Moreover, metabolomic data from non-targeted LC-HRMS and GC-MS analysis allowed predictions of the best and worst genotypes from one to the other vintage (model building on one vintage, validation on another vintage). These findings form a solid base for the development, improvement and validation of predictive models based on genetic data. A novel genotyping by sequencing approach lead to a full informative genetic map of the breeding population based on SNP markers.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jochen Vestner

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany. ,Ulrich Fischer, Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany.

Contact the author

Keywords

pathogen-resistant, grape varieties ,molecular markers, genetics, sensory, aroma, breeding

Citation

Related articles…

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

Screening of Italian red wines for quercetin precipitation risk index

Quercetin (Q), a phenolic compound released from grape skins during red wine maceration, has been identified as a source of instability in bottled wines, particularly Sangiovese, due to crystallisation. This phenomenon represents an economic challenge for producers and affects wine clarity and consumer perception.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Reduced fungicide sprayings: A biodiversity boost?

Pesticides are considered one of the main causes for arthropod decline in agriculture which in turn may affect ecosystem services such as natural pest control and soil fertility.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.