Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Sensory and chemical phenotyping of wines from a F1 grapevine population

Sensory and chemical phenotyping of wines from a F1 grapevine population

Abstract

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU, compared to other crops such as grains. In order to achieve the ambitious target of 50% pesticide reduction in viticulture, the increased cultivation of new pathogen-resistant grape varieties is indispensable. New pathogen-resistant grape varieties, which have been selected for their high quality potential, allow up to 80% less fungicide use. These varieties are therefore an important building block in the transformation process to more sustainable viticulture. The project Predictive Breeding for Wine Quality »SelWineQ« (Select Wine Quality) focuses on the development of robust predictive models for the genetic quality potential (GQP) of grapevine varieties during the breeding process based on sensory, metabolomic, and genomic data. Predictive models for wine quality traits will considerably increase the efficiency of grapevine breeding. The centerpiece of the “SelWineQ” project is an F1 breeding population of Calardis Musqué and Villiard blanc consisting of 150 genotypes (8 vines each). Over three vintages experimental wines of each genotype were made. Every year a professional trained panel evaluated the wines of all genotypes. This sensory evaluation forms a broad data basis for modeling sensory quality traits from genetic and metabolic data. One of the most important results from the sensory evaluation is the “Total Quality Score”, a sum parameter for the olfactory and gustatory total quality of the wines. This quality parameter was found to be constant for the best and worst wines of the breeding population over several years. Thus, the best and worst wines could be reproducibly identified. This result shows, besides an excellent panel performance, that the quality potential is mainly determined by the genetic properties of the plants and that environmental influences (different vintages) are less important. The combination of analytical data and data from the sensory evaluation facilitated the identification of linalool and cis-rose oxide (among other terpenoids) as molecular quality markers. These aroma-active compounds were present in the best evaluated wines far above their olfactory threshold and showed a high correlation (r > 0.7 Pearson) with the attribute “floral”. Moreover, metabolomic data from non-targeted LC-HRMS and GC-MS analysis allowed predictions of the best and worst genotypes from one to the other vintage (model building on one vintage, validation on another vintage). These findings form a solid base for the development, improvement and validation of predictive models based on genetic data. A novel genotyping by sequencing approach lead to a full informative genetic map of the breeding population based on SNP markers.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jochen Vestner

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany. ,Ulrich Fischer, Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany.

Contact the author

Keywords

pathogen-resistant, grape varieties ,molecular markers, genetics, sensory, aroma, breeding

Citation

Related articles…

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].