Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Abstract

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality, tipicity and adaptation to different climate conditions. Non-volatile phenolic compounds are intrinsic components of grape fruits and derived products, particularly wine. They constitute a heterogeneous family of compounds and play an important role on the sensorial attributes of wine because they are responsible for some of important organoleptic properties as colour, flavour, bitterness and astringency. In the present study, we used a targeted metabolomics approach based on ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-QqQ-MS/MS) to study the anthocyanin and non-coloured phenol profiles of a singular Tempranillo clone (Tempranillo negro or VN21), characterized by a dark-blue color in grape berry skin, as compared to RJ43, one of the most cultivated clones in D.O.Ca. Rioja (Spain). In addition, we investigated differences between VN21 and RJ43 clones, in the phenolic transference from grape to wine at different phases of the winemaking process. The results showed that anthocyanin and non-colored phenol content was higher in VN21 grape skin and seeds than in RJ43. With respect to anthocyanins, the singular color of grape skin in VN21 could be explained by higher concentrations of peonidin and cyanidin derivatives. Regarding non-colored phenols, the main differences were observed for proanthocyanidins and stilbenes concentration in grape skin and more importantly in seeds. Those content differences observed in berries were enhanced in the VN21 wines, displaying significantly higher concentrations of anthocyanins, as well as significantly increased contents of mainly proanthocyanidins and stilbenes. The results manifest the importance of intra-cultivar genetic diversity to obtain red wines with a high phenolic content, responsible of key quality aspects of the wine such as organoleptic properties, stability, complexity and health benefits. Moreover, this study exemplifies how spontaneous somatic variation can be used through grapevine clonal selection combining metabolomic analyses.

FUNDING SOURCES

This work was partially supported by project BIO2017-86375-R from the Spanish Ministry of Economy and Competitiveness (co-funded by the European Social Fund, European Union); YF was supported by a grant from Government of La Rioja; M.J. Motilva thanks to CSIC for partial funding through the “Ayudas incorporación a escalas científicas CSIC, 2018” (Reference 201870I129).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yolanda Ferradás 

Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain,Carolina ROYO, José Miguel MARTÍNEZ-ZAPATER and María José MOTILVA  Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain

Contact the author

Keywords

anthocyanins, berry phenolic composition, wine phenolic composition, somatic variation, grapevine, phenolic compounds, stilbenes, tempranillo

Citation

Related articles…

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.