Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Abstract

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality, tipicity and adaptation to different climate conditions. Non-volatile phenolic compounds are intrinsic components of grape fruits and derived products, particularly wine. They constitute a heterogeneous family of compounds and play an important role on the sensorial attributes of wine because they are responsible for some of important organoleptic properties as colour, flavour, bitterness and astringency. In the present study, we used a targeted metabolomics approach based on ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-QqQ-MS/MS) to study the anthocyanin and non-coloured phenol profiles of a singular Tempranillo clone (Tempranillo negro or VN21), characterized by a dark-blue color in grape berry skin, as compared to RJ43, one of the most cultivated clones in D.O.Ca. Rioja (Spain). In addition, we investigated differences between VN21 and RJ43 clones, in the phenolic transference from grape to wine at different phases of the winemaking process. The results showed that anthocyanin and non-colored phenol content was higher in VN21 grape skin and seeds than in RJ43. With respect to anthocyanins, the singular color of grape skin in VN21 could be explained by higher concentrations of peonidin and cyanidin derivatives. Regarding non-colored phenols, the main differences were observed for proanthocyanidins and stilbenes concentration in grape skin and more importantly in seeds. Those content differences observed in berries were enhanced in the VN21 wines, displaying significantly higher concentrations of anthocyanins, as well as significantly increased contents of mainly proanthocyanidins and stilbenes. The results manifest the importance of intra-cultivar genetic diversity to obtain red wines with a high phenolic content, responsible of key quality aspects of the wine such as organoleptic properties, stability, complexity and health benefits. Moreover, this study exemplifies how spontaneous somatic variation can be used through grapevine clonal selection combining metabolomic analyses.

FUNDING SOURCES

This work was partially supported by project BIO2017-86375-R from the Spanish Ministry of Economy and Competitiveness (co-funded by the European Social Fund, European Union); YF was supported by a grant from Government of La Rioja; M.J. Motilva thanks to CSIC for partial funding through the “Ayudas incorporación a escalas científicas CSIC, 2018” (Reference 201870I129).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yolanda Ferradás 

Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain,Carolina ROYO, José Miguel MARTÍNEZ-ZAPATER and María José MOTILVA  Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain

Contact the author

Keywords

anthocyanins, berry phenolic composition, wine phenolic composition, somatic variation, grapevine, phenolic compounds, stilbenes, tempranillo

Citation

Related articles…

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Caractérisation des relations hydriques sol/vigne dans un terroir languedocien

Par le fait d’une politique agricole communautaire axée sur des objectifs de qualité des produits, la recherche et l’identification des critères de cette qualité deviennent impératives. En viticulture, la notion de qualité du produit est rattachée au concept théorique de «terroir». Ce terme englobe un ensemble de paramètres du milieu (géologie, sol, climat) influant sur la récolte.

Toward a model of grape proanthocyanidin extraction during vinification

PAs are compartmentalised within the grape berry, and differ in their composition and degree of extractability. Within each compartment, the CWM limits PA extraction firstly by its degree of permeability and secondly its ability to complex with PA molecules.

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).