Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Abstract

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality, tipicity and adaptation to different climate conditions. Non-volatile phenolic compounds are intrinsic components of grape fruits and derived products, particularly wine. They constitute a heterogeneous family of compounds and play an important role on the sensorial attributes of wine because they are responsible for some of important organoleptic properties as colour, flavour, bitterness and astringency. In the present study, we used a targeted metabolomics approach based on ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-QqQ-MS/MS) to study the anthocyanin and non-coloured phenol profiles of a singular Tempranillo clone (Tempranillo negro or VN21), characterized by a dark-blue color in grape berry skin, as compared to RJ43, one of the most cultivated clones in D.O.Ca. Rioja (Spain). In addition, we investigated differences between VN21 and RJ43 clones, in the phenolic transference from grape to wine at different phases of the winemaking process. The results showed that anthocyanin and non-colored phenol content was higher in VN21 grape skin and seeds than in RJ43. With respect to anthocyanins, the singular color of grape skin in VN21 could be explained by higher concentrations of peonidin and cyanidin derivatives. Regarding non-colored phenols, the main differences were observed for proanthocyanidins and stilbenes concentration in grape skin and more importantly in seeds. Those content differences observed in berries were enhanced in the VN21 wines, displaying significantly higher concentrations of anthocyanins, as well as significantly increased contents of mainly proanthocyanidins and stilbenes. The results manifest the importance of intra-cultivar genetic diversity to obtain red wines with a high phenolic content, responsible of key quality aspects of the wine such as organoleptic properties, stability, complexity and health benefits. Moreover, this study exemplifies how spontaneous somatic variation can be used through grapevine clonal selection combining metabolomic analyses.

FUNDING SOURCES

This work was partially supported by project BIO2017-86375-R from the Spanish Ministry of Economy and Competitiveness (co-funded by the European Social Fund, European Union); YF was supported by a grant from Government of La Rioja; M.J. Motilva thanks to CSIC for partial funding through the “Ayudas incorporación a escalas científicas CSIC, 2018” (Reference 201870I129).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yolanda Ferradás 

Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain,Carolina ROYO, José Miguel MARTÍNEZ-ZAPATER and María José MOTILVA  Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain

Contact the author

Keywords

anthocyanins, berry phenolic composition, wine phenolic composition, somatic variation, grapevine, phenolic compounds, stilbenes, tempranillo

Citation

Related articles…

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Chemometric profiling of Pinot noir wine from south tyrol as a tool to reach wine style goals

AIM: Pinot Noir (PN) wines produced in South Tyrol were profiled with the aim to provide guidelines for the oenologist to reach specific winemaking goals in terms of typicity and quality.