Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

Abstract

AIM: The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico (Vitis vinifera L.) vineyards situated in Apulia region in Italy during the 2018 season.

METHODS: Three defoliation treatments were carried out in the vineyard: DN, where 100% of fruit-zone leaves removed from the North canopy side; DS, 100% where of fruit-zone leaves were removed, from the South canopy side DNS, where 100% removal of fruit-zone leaves on both the North and the South side of the canopy. A control (CT), where all basal leaves were retained in each shoot, also was performed. Instrumental (GC-MS) and sensory analysis (QDA) were used to evaluate the treatment effect on volatile composition and sensory descriptors of wines.

RESULTS: Results showed the effect of early defoliation treatment on 37.8 % (14 out 37 compounds) of the volatiles identified and quantified. Defoliation treatments led to wines with the significant highest concentrations of 13 volatile compounds. Aglianico wines from early defoliation in north side (DN) increase the concentration of nine volatile compounds respect to south side (DS) and both sides (DNS). In sensory analysis Aglianico wines were defined by sixteen sensory attributes with GM > 30 %, where the highest values were reached for defoliation treatments vs control. Moreover, ten sensory descriptors (> 30 % GM) reached the highest value for DNS treatment. The highest value for total quality was also reached by DNS treatment. In conclusion defoliation treatments increased the volatile concentration of Aglianico wines.

CONCLUSIONS

In conclusion defoliation treatments increased the volatile concentration of Aglianico wines from Apulia region (Italy).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mar Vilanova 

Instituto de Ciencias de la Vid y del Vino (CSIC, Spain),D. Iorio, University of Bari Aldo Moro (Italy) G. Gambacorta, University of Bari Aldo Moro (Italy) L. Tarricone, Research Centre for Viticulture and Enology (Italy) V.M. Paradiso, University of Bari Aldo Moro (Italy)  M. Vilanova, Instituto de Ciencias de la Vid y del Vino (CSIC, Spain)

Contact the author

Keywords

leaf removal, volatile composition, wine quality

Citation

Related articles…

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴