Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

Abstract

AIM: The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico (Vitis vinifera L.) vineyards situated in Apulia region in Italy during the 2018 season.

METHODS: Three defoliation treatments were carried out in the vineyard: DN, where 100% of fruit-zone leaves removed from the North canopy side; DS, 100% where of fruit-zone leaves were removed, from the South canopy side DNS, where 100% removal of fruit-zone leaves on both the North and the South side of the canopy. A control (CT), where all basal leaves were retained in each shoot, also was performed. Instrumental (GC-MS) and sensory analysis (QDA) were used to evaluate the treatment effect on volatile composition and sensory descriptors of wines.

RESULTS: Results showed the effect of early defoliation treatment on 37.8 % (14 out 37 compounds) of the volatiles identified and quantified. Defoliation treatments led to wines with the significant highest concentrations of 13 volatile compounds. Aglianico wines from early defoliation in north side (DN) increase the concentration of nine volatile compounds respect to south side (DS) and both sides (DNS). In sensory analysis Aglianico wines were defined by sixteen sensory attributes with GM > 30 %, where the highest values were reached for defoliation treatments vs control. Moreover, ten sensory descriptors (> 30 % GM) reached the highest value for DNS treatment. The highest value for total quality was also reached by DNS treatment. In conclusion defoliation treatments increased the volatile concentration of Aglianico wines.

CONCLUSIONS

In conclusion defoliation treatments increased the volatile concentration of Aglianico wines from Apulia region (Italy).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mar Vilanova 

Instituto de Ciencias de la Vid y del Vino (CSIC, Spain),D. Iorio, University of Bari Aldo Moro (Italy) G. Gambacorta, University of Bari Aldo Moro (Italy) L. Tarricone, Research Centre for Viticulture and Enology (Italy) V.M. Paradiso, University of Bari Aldo Moro (Italy)  M. Vilanova, Instituto de Ciencias de la Vid y del Vino (CSIC, Spain)

Contact the author

Keywords

leaf removal, volatile composition, wine quality

Citation

Related articles…

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques