Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Abstract

AIM: Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

METHODS: A plant growth chamber for stable isotope labeling has been set in an environmental control system, basing on pulse-chasing isotopic strategy to trace carbon phloem flows on potted grapevines.In addition, an open-air plant/soil growth system consisting in twelve independent plant/pot balloons with computing-adjustable air flows allowing continuous gas exchange detection between plants / soil and atmosphere has been set.

RESULTS: Water stress caused a drastic decrease in the photosynthesis rate and a decrease in the respiration rate of the soil by about 50%; after rehydration the plants fully recovered the photosynthetic capacity in the morning, while the photosynthetic capacity in the afternoon remained compromised. Sugar accumulation in berries decreased in plants subjected to continuous stress, while the acidity was higher for both plants subjected to continuous stress and rehydrated plants. Grape production was lower in plants subjected to continuous stress.Plants under water stress had a low and constant microbial biomass throughout the season, whereas irrigated and rehydrated plants remained similar in the first days of the experiment, and an explosion of microbial biomass was recorded in plants rehydrated 15 days after rehydration. This may indicate a higher contribution of carbon allocated by the rehydrated plant to the microbial mass of the rhizosphere.

CONCLUSIONS

Water stress causes a greater diversion of the newly photosynthesized carbonaceous resources to the berry (about double compared to irrigation controls). The carbon accumulated in the berry is stored in a stable manner. The carbon diverted to the root over 30 days is mostly consumed.The plant in recovery diverts the same percentage of carbon marked to the berry of the plants in water stress although in absolute its photosynthesis is about double than under water stress (it is comparable or even higher than photosynthesis un irrigated control plants); therefore the total C sent to the berry is greater in recovery than in irrigation control.Through a daily respired / photosynthesized C balance we show that during the ripening of the berry 60% of the C assimilated in the irrigated condition is respired. Since the accumulation of neo-photosynthetate is stable at 27%, this amount does not affect the reserves accumulated in the pre-veraison root.Delivery of labeled carbon in different sinks is discussed in parallel with the expression of genes involved in carbohydrate transport. Financial support: CARBOSTRESS project – CRT – Cassa Risparmio Torino Foundation.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Lucien Patono

Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy,Daniel, SAID PULLICINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Leandro, ELOI ALCATRAO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, IVALDI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Andrea, FIRBUS, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, GAMBINO, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Irene, PERRONE, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Walter, CHITARRRA, Centro di Ricerca Viticoltura ed Enologia VE, CREA, Conegliano, Italy  Alessandra, FERRANDINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Davide, RICAUDA AIMONINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Luisella, CELI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Claudio, LOVISOLO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy

Contact the author

Keywords

drought, carbon isotope labeling, respiration, photosynthesis, phloem

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Essai de maîtrise optimisée de la vigueur de deux clones de chenin sur schistes verts du carbonifère en zone A.O.C. Coteaux du Layon

Les buts principaux de cet essai, sont la mise en évidence des effets traitement agroviticole et millésime, par une recherche de liens entre les données vendanges et sensorielles des vins issus.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

A research agenda for terroir: an empirical, international expert study

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010)

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored