Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Abstract

AIM: Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

METHODS: A plant growth chamber for stable isotope labeling has been set in an environmental control system, basing on pulse-chasing isotopic strategy to trace carbon phloem flows on potted grapevines.In addition, an open-air plant/soil growth system consisting in twelve independent plant/pot balloons with computing-adjustable air flows allowing continuous gas exchange detection between plants / soil and atmosphere has been set.

RESULTS: Water stress caused a drastic decrease in the photosynthesis rate and a decrease in the respiration rate of the soil by about 50%; after rehydration the plants fully recovered the photosynthetic capacity in the morning, while the photosynthetic capacity in the afternoon remained compromised. Sugar accumulation in berries decreased in plants subjected to continuous stress, while the acidity was higher for both plants subjected to continuous stress and rehydrated plants. Grape production was lower in plants subjected to continuous stress.Plants under water stress had a low and constant microbial biomass throughout the season, whereas irrigated and rehydrated plants remained similar in the first days of the experiment, and an explosion of microbial biomass was recorded in plants rehydrated 15 days after rehydration. This may indicate a higher contribution of carbon allocated by the rehydrated plant to the microbial mass of the rhizosphere.

CONCLUSIONS

Water stress causes a greater diversion of the newly photosynthesized carbonaceous resources to the berry (about double compared to irrigation controls). The carbon accumulated in the berry is stored in a stable manner. The carbon diverted to the root over 30 days is mostly consumed.The plant in recovery diverts the same percentage of carbon marked to the berry of the plants in water stress although in absolute its photosynthesis is about double than under water stress (it is comparable or even higher than photosynthesis un irrigated control plants); therefore the total C sent to the berry is greater in recovery than in irrigation control.Through a daily respired / photosynthesized C balance we show that during the ripening of the berry 60% of the C assimilated in the irrigated condition is respired. Since the accumulation of neo-photosynthetate is stable at 27%, this amount does not affect the reserves accumulated in the pre-veraison root.Delivery of labeled carbon in different sinks is discussed in parallel with the expression of genes involved in carbohydrate transport. Financial support: CARBOSTRESS project – CRT – Cassa Risparmio Torino Foundation.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Lucien Patono

Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy,Daniel, SAID PULLICINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Leandro, ELOI ALCATRAO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, IVALDI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Andrea, FIRBUS, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, GAMBINO, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Irene, PERRONE, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Walter, CHITARRRA, Centro di Ricerca Viticoltura ed Enologia VE, CREA, Conegliano, Italy  Alessandra, FERRANDINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Davide, RICAUDA AIMONINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Luisella, CELI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Claudio, LOVISOLO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy

Contact the author

Keywords

drought, carbon isotope labeling, respiration, photosynthesis, phloem

Citation

Related articles…

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.