Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Abstract

AIM: Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

METHODS: A plant growth chamber for stable isotope labeling has been set in an environmental control system, basing on pulse-chasing isotopic strategy to trace carbon phloem flows on potted grapevines.In addition, an open-air plant/soil growth system consisting in twelve independent plant/pot balloons with computing-adjustable air flows allowing continuous gas exchange detection between plants / soil and atmosphere has been set.

RESULTS: Water stress caused a drastic decrease in the photosynthesis rate and a decrease in the respiration rate of the soil by about 50%; after rehydration the plants fully recovered the photosynthetic capacity in the morning, while the photosynthetic capacity in the afternoon remained compromised. Sugar accumulation in berries decreased in plants subjected to continuous stress, while the acidity was higher for both plants subjected to continuous stress and rehydrated plants. Grape production was lower in plants subjected to continuous stress.Plants under water stress had a low and constant microbial biomass throughout the season, whereas irrigated and rehydrated plants remained similar in the first days of the experiment, and an explosion of microbial biomass was recorded in plants rehydrated 15 days after rehydration. This may indicate a higher contribution of carbon allocated by the rehydrated plant to the microbial mass of the rhizosphere.

CONCLUSIONS

Water stress causes a greater diversion of the newly photosynthesized carbonaceous resources to the berry (about double compared to irrigation controls). The carbon accumulated in the berry is stored in a stable manner. The carbon diverted to the root over 30 days is mostly consumed.The plant in recovery diverts the same percentage of carbon marked to the berry of the plants in water stress although in absolute its photosynthesis is about double than under water stress (it is comparable or even higher than photosynthesis un irrigated control plants); therefore the total C sent to the berry is greater in recovery than in irrigation control.Through a daily respired / photosynthesized C balance we show that during the ripening of the berry 60% of the C assimilated in the irrigated condition is respired. Since the accumulation of neo-photosynthetate is stable at 27%, this amount does not affect the reserves accumulated in the pre-veraison root.Delivery of labeled carbon in different sinks is discussed in parallel with the expression of genes involved in carbohydrate transport. Financial support: CARBOSTRESS project – CRT – Cassa Risparmio Torino Foundation.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Lucien Patono

Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy,Daniel, SAID PULLICINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Leandro, ELOI ALCATRAO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, IVALDI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Andrea, FIRBUS, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, GAMBINO, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Irene, PERRONE, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Walter, CHITARRRA, Centro di Ricerca Viticoltura ed Enologia VE, CREA, Conegliano, Italy  Alessandra, FERRANDINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Davide, RICAUDA AIMONINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Luisella, CELI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Claudio, LOVISOLO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy

Contact the author

Keywords

drought, carbon isotope labeling, respiration, photosynthesis, phloem

Citation

Related articles…

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

Influence du porte-greffe sur le statut minéral du greffon

Dans le cadre de TerclimPro 2025, Elisa Marguerit a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8387

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.