Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

Abstract

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide. While the effect of copper on soil and vine is understood, few data are published concerning its impact on wine aromas (Darriet et al. 2001) and even less concerning varietal thiol. The aim of this work was to characterize the thiol aromatic potential of Colombard and Gros Manseng grapes and to investigate the effect of copper on thiol precursor biogenesis. We selected 30 parcels (15 conventional and 15 organic) with sampling at harvest for 18 of them and 3 sampling dates during ripening for the other 12 parcels. Chemical analyses of thiol precursors were performed by adapting an UPLC-MS/MS method based upon Stable Isotope Dilution Assay (Bonnaffoux et al. 2017)

RESULTS: With this first characterization, we demonstrated that both varieties presented concentrations of glutathionylated (G3SH) and cysteinylated (Cys3SH) precursors of 3-sulfanylhexan-1-ol up to 454 µg/kg and 21 µg/kg respectively. No precursors of the 4-sulfanyl-4-methylpentan-2-one were detected. So, Colombard and Gros Manseng were ranked in the top of varietal thiol producers with Sauvignon and Pinot Gris grapes (Pena-Gallego et al. 2012). By comparing the copper protected parcels to the others, we identified a significant decrease (p-value = 0.01) of G3SH content in organic Gros Manseng grapes which was around 30%. This could represent a loss in 3SH of 1000 ng/kg in finished wines if a conversion rate of 3% between G3SH and 3SH was considered. On the opposite, Colombard grapes remained unaffected by the copper spraying with no effect on the precursors content at harvest. We also analyzed the accumulation kinetics of thiol precursors under the two protection methods (copper or not). No accumulation of thiol precursors between seven days prior and after the harvest was observed in Colombard grapes which was inconsistent with literature on other grape varieties such as Sauvignon B. or Melon B. (Roland et al. 2010). Gros Manseng grapes showed significant accumulation for conventional culture (161 µg/kg to 356 µg/kg) over the two last weeks of ripening. Furthermore, copper treated parcels of Gros Manseng have no accumulation through the two-week study. However, Pearson test did not show a direct correlation between copper content and G3SH suggesting a possible interaction of copper with thiol precursors making them not analyzable under our conditions or a modification of vine metabolism.

CONCLUSION:

We characterized for the first time two grapes varieties (Colombard and Gros Manseng) that have high potential towards varietal thiols such as Sauvignon. We identified a negative copper effect on Gros Manseng variety for both precursors content at harvest and accumulation kinetics while Colombard remained unaffected.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gabriel Dournes, Arnaud VERBAERE, Frédéric LOPEZ, Thierry DUFOURCQ, Jean-Roch MOURET, Aurélie ROLAND

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France, IFV Sud-Ouest, Château de Mons, 32100 Caussens, France

Contact the author

Keywords

copper, thiol precursors, colombard, gros manseng, wine

Citation

Related articles…

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).