Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

Abstract

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide. While the effect of copper on soil and vine is understood, few data are published concerning its impact on wine aromas (Darriet et al. 2001) and even less concerning varietal thiol. The aim of this work was to characterize the thiol aromatic potential of Colombard and Gros Manseng grapes and to investigate the effect of copper on thiol precursor biogenesis. We selected 30 parcels (15 conventional and 15 organic) with sampling at harvest for 18 of them and 3 sampling dates during ripening for the other 12 parcels. Chemical analyses of thiol precursors were performed by adapting an UPLC-MS/MS method based upon Stable Isotope Dilution Assay (Bonnaffoux et al. 2017)

RESULTS: With this first characterization, we demonstrated that both varieties presented concentrations of glutathionylated (G3SH) and cysteinylated (Cys3SH) precursors of 3-sulfanylhexan-1-ol up to 454 µg/kg and 21 µg/kg respectively. No precursors of the 4-sulfanyl-4-methylpentan-2-one were detected. So, Colombard and Gros Manseng were ranked in the top of varietal thiol producers with Sauvignon and Pinot Gris grapes (Pena-Gallego et al. 2012). By comparing the copper protected parcels to the others, we identified a significant decrease (p-value = 0.01) of G3SH content in organic Gros Manseng grapes which was around 30%. This could represent a loss in 3SH of 1000 ng/kg in finished wines if a conversion rate of 3% between G3SH and 3SH was considered. On the opposite, Colombard grapes remained unaffected by the copper spraying with no effect on the precursors content at harvest. We also analyzed the accumulation kinetics of thiol precursors under the two protection methods (copper or not). No accumulation of thiol precursors between seven days prior and after the harvest was observed in Colombard grapes which was inconsistent with literature on other grape varieties such as Sauvignon B. or Melon B. (Roland et al. 2010). Gros Manseng grapes showed significant accumulation for conventional culture (161 µg/kg to 356 µg/kg) over the two last weeks of ripening. Furthermore, copper treated parcels of Gros Manseng have no accumulation through the two-week study. However, Pearson test did not show a direct correlation between copper content and G3SH suggesting a possible interaction of copper with thiol precursors making them not analyzable under our conditions or a modification of vine metabolism.

CONCLUSION:

We characterized for the first time two grapes varieties (Colombard and Gros Manseng) that have high potential towards varietal thiols such as Sauvignon. We identified a negative copper effect on Gros Manseng variety for both precursors content at harvest and accumulation kinetics while Colombard remained unaffected.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gabriel Dournes, Arnaud VERBAERE, Frédéric LOPEZ, Thierry DUFOURCQ, Jean-Roch MOURET, Aurélie ROLAND

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France, IFV Sud-Ouest, Château de Mons, 32100 Caussens, France

Contact the author

Keywords

copper, thiol precursors, colombard, gros manseng, wine

Citation

Related articles…

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

Soil, foliar, and juice nitrogen application: influence on fruit and wine for Chardonel grown in Virginia

Nitrogen (N) is applied in the vineyard or the winery in wine production systems. The influence of different routes of N application is not well understood.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.