Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

Abstract

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide. While the effect of copper on soil and vine is understood, few data are published concerning its impact on wine aromas (Darriet et al. 2001) and even less concerning varietal thiol. The aim of this work was to characterize the thiol aromatic potential of Colombard and Gros Manseng grapes and to investigate the effect of copper on thiol precursor biogenesis. We selected 30 parcels (15 conventional and 15 organic) with sampling at harvest for 18 of them and 3 sampling dates during ripening for the other 12 parcels. Chemical analyses of thiol precursors were performed by adapting an UPLC-MS/MS method based upon Stable Isotope Dilution Assay (Bonnaffoux et al. 2017)

RESULTS: With this first characterization, we demonstrated that both varieties presented concentrations of glutathionylated (G3SH) and cysteinylated (Cys3SH) precursors of 3-sulfanylhexan-1-ol up to 454 µg/kg and 21 µg/kg respectively. No precursors of the 4-sulfanyl-4-methylpentan-2-one were detected. So, Colombard and Gros Manseng were ranked in the top of varietal thiol producers with Sauvignon and Pinot Gris grapes (Pena-Gallego et al. 2012). By comparing the copper protected parcels to the others, we identified a significant decrease (p-value = 0.01) of G3SH content in organic Gros Manseng grapes which was around 30%. This could represent a loss in 3SH of 1000 ng/kg in finished wines if a conversion rate of 3% between G3SH and 3SH was considered. On the opposite, Colombard grapes remained unaffected by the copper spraying with no effect on the precursors content at harvest. We also analyzed the accumulation kinetics of thiol precursors under the two protection methods (copper or not). No accumulation of thiol precursors between seven days prior and after the harvest was observed in Colombard grapes which was inconsistent with literature on other grape varieties such as Sauvignon B. or Melon B. (Roland et al. 2010). Gros Manseng grapes showed significant accumulation for conventional culture (161 µg/kg to 356 µg/kg) over the two last weeks of ripening. Furthermore, copper treated parcels of Gros Manseng have no accumulation through the two-week study. However, Pearson test did not show a direct correlation between copper content and G3SH suggesting a possible interaction of copper with thiol precursors making them not analyzable under our conditions or a modification of vine metabolism.

CONCLUSION:

We characterized for the first time two grapes varieties (Colombard and Gros Manseng) that have high potential towards varietal thiols such as Sauvignon. We identified a negative copper effect on Gros Manseng variety for both precursors content at harvest and accumulation kinetics while Colombard remained unaffected.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gabriel Dournes, Arnaud VERBAERE, Frédéric LOPEZ, Thierry DUFOURCQ, Jean-Roch MOURET, Aurélie ROLAND

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France, IFV Sud-Ouest, Château de Mons, 32100 Caussens, France

Contact the author

Keywords

copper, thiol precursors, colombard, gros manseng, wine

Citation

Related articles…

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.