Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Abstract

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF.

METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity. Grapes were destemmed, crushed and placed in twelve 200-L tanks to perform 4 different experimental conditions by triplicate. Three tanks were coinoculated with O. Oeni and S. cerevisiae, 3 with L. plantarum and S. cerevisiae whereas the other 6 tanks were inoculated only with the same strain of S. cerevisiae. Once alcoholic fermentation was finished 3 of these tanks were inoculated with O. oeni while the other 3 were maintained for spontaneous MLF. Once MLF were finished all the wines were sulphited and racked to 100-L plastic tanks (Flexcube, Quilinox) with oxygen permeability similar to oak barrels. Two months later the wines were analyzed: standard parameters, acids (enzymatic methods), colour (CIEL*a*b*), anthocyanins (spectrophotometry and HPLC), tannins (methyl cellulose and phloroglucinolysis-HPLC). Wines were also tasted by a trained panel.

RESULTS: All the wines submitted to coinoculation finished MLF at the same time that alcoholic fermentation. Wines submitted to sequential inoculation finished MLF around 20 days later while wines submitted to spontaneous MLF needed around 40 days. All coinoculated wines had significant higher titratable acidity and lactic acid concentration, especially those coinoculated with L. plantarum, than wines from sequential inoculation or spontaneous MLF. Moreover, all the wines from coinoculation had more intense colour and higher total phenolic index (TPI) than the other wines.

CONCLUSIONS:

These results confirm that coinoculation with both species of lactic acid bacteria, or L. plantarum, are an interesting tool to favour MLF and consequently shorten the waiting times associated with conventional malolactic fermentation. Moreover, it seems that coinoculation has other complementary and interesting effects on wine acidity, colour and phenolic compound composition.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jordi Gombau, Jordi Gombau, Corentin Toullec, Marta Conde, Pedro Elena, José Mª Heras, Joan Miquel Canals,  Fernando Zamora, 

Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona. Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain

Contact the author

Keywords

malolactic fermentation, lactobacillus plantarum, Oenococcus oeni, coinoculation, color, phenolic compounds

Citation

Related articles…

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.