Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Abstract

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF.

METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity. Grapes were destemmed, crushed and placed in twelve 200-L tanks to perform 4 different experimental conditions by triplicate. Three tanks were coinoculated with O. Oeni and S. cerevisiae, 3 with L. plantarum and S. cerevisiae whereas the other 6 tanks were inoculated only with the same strain of S. cerevisiae. Once alcoholic fermentation was finished 3 of these tanks were inoculated with O. oeni while the other 3 were maintained for spontaneous MLF. Once MLF were finished all the wines were sulphited and racked to 100-L plastic tanks (Flexcube, Quilinox) with oxygen permeability similar to oak barrels. Two months later the wines were analyzed: standard parameters, acids (enzymatic methods), colour (CIEL*a*b*), anthocyanins (spectrophotometry and HPLC), tannins (methyl cellulose and phloroglucinolysis-HPLC). Wines were also tasted by a trained panel.

RESULTS: All the wines submitted to coinoculation finished MLF at the same time that alcoholic fermentation. Wines submitted to sequential inoculation finished MLF around 20 days later while wines submitted to spontaneous MLF needed around 40 days. All coinoculated wines had significant higher titratable acidity and lactic acid concentration, especially those coinoculated with L. plantarum, than wines from sequential inoculation or spontaneous MLF. Moreover, all the wines from coinoculation had more intense colour and higher total phenolic index (TPI) than the other wines.

CONCLUSIONS:

These results confirm that coinoculation with both species of lactic acid bacteria, or L. plantarum, are an interesting tool to favour MLF and consequently shorten the waiting times associated with conventional malolactic fermentation. Moreover, it seems that coinoculation has other complementary and interesting effects on wine acidity, colour and phenolic compound composition.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jordi Gombau, Jordi Gombau, Corentin Toullec, Marta Conde, Pedro Elena, José Mª Heras, Joan Miquel Canals,  Fernando Zamora, 

Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona. Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain

Contact the author

Keywords

malolactic fermentation, lactobacillus plantarum, Oenococcus oeni, coinoculation, color, phenolic compounds

Citation

Related articles…

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.