Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Abstract

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF.

METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity. Grapes were destemmed, crushed and placed in twelve 200-L tanks to perform 4 different experimental conditions by triplicate. Three tanks were coinoculated with O. Oeni and S. cerevisiae, 3 with L. plantarum and S. cerevisiae whereas the other 6 tanks were inoculated only with the same strain of S. cerevisiae. Once alcoholic fermentation was finished 3 of these tanks were inoculated with O. oeni while the other 3 were maintained for spontaneous MLF. Once MLF were finished all the wines were sulphited and racked to 100-L plastic tanks (Flexcube, Quilinox) with oxygen permeability similar to oak barrels. Two months later the wines were analyzed: standard parameters, acids (enzymatic methods), colour (CIEL*a*b*), anthocyanins (spectrophotometry and HPLC), tannins (methyl cellulose and phloroglucinolysis-HPLC). Wines were also tasted by a trained panel.

RESULTS: All the wines submitted to coinoculation finished MLF at the same time that alcoholic fermentation. Wines submitted to sequential inoculation finished MLF around 20 days later while wines submitted to spontaneous MLF needed around 40 days. All coinoculated wines had significant higher titratable acidity and lactic acid concentration, especially those coinoculated with L. plantarum, than wines from sequential inoculation or spontaneous MLF. Moreover, all the wines from coinoculation had more intense colour and higher total phenolic index (TPI) than the other wines.

CONCLUSIONS:

These results confirm that coinoculation with both species of lactic acid bacteria, or L. plantarum, are an interesting tool to favour MLF and consequently shorten the waiting times associated with conventional malolactic fermentation. Moreover, it seems that coinoculation has other complementary and interesting effects on wine acidity, colour and phenolic compound composition.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jordi Gombau, Jordi Gombau, Corentin Toullec, Marta Conde, Pedro Elena, José Mª Heras, Joan Miquel Canals,  Fernando Zamora, 

Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona. Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain

Contact the author

Keywords

malolactic fermentation, lactobacillus plantarum, Oenococcus oeni, coinoculation, color, phenolic compounds

Citation

Related articles…

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.