Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

Abstract

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF.

METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity. Grapes were destemmed, crushed and placed in twelve 200-L tanks to perform 4 different experimental conditions by triplicate. Three tanks were coinoculated with O. Oeni and S. cerevisiae, 3 with L. plantarum and S. cerevisiae whereas the other 6 tanks were inoculated only with the same strain of S. cerevisiae. Once alcoholic fermentation was finished 3 of these tanks were inoculated with O. oeni while the other 3 were maintained for spontaneous MLF. Once MLF were finished all the wines were sulphited and racked to 100-L plastic tanks (Flexcube, Quilinox) with oxygen permeability similar to oak barrels. Two months later the wines were analyzed: standard parameters, acids (enzymatic methods), colour (CIEL*a*b*), anthocyanins (spectrophotometry and HPLC), tannins (methyl cellulose and phloroglucinolysis-HPLC). Wines were also tasted by a trained panel.

RESULTS: All the wines submitted to coinoculation finished MLF at the same time that alcoholic fermentation. Wines submitted to sequential inoculation finished MLF around 20 days later while wines submitted to spontaneous MLF needed around 40 days. All coinoculated wines had significant higher titratable acidity and lactic acid concentration, especially those coinoculated with L. plantarum, than wines from sequential inoculation or spontaneous MLF. Moreover, all the wines from coinoculation had more intense colour and higher total phenolic index (TPI) than the other wines.

CONCLUSIONS:

These results confirm that coinoculation with both species of lactic acid bacteria, or L. plantarum, are an interesting tool to favour MLF and consequently shorten the waiting times associated with conventional malolactic fermentation. Moreover, it seems that coinoculation has other complementary and interesting effects on wine acidity, colour and phenolic compound composition.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jordi Gombau, Jordi Gombau, Corentin Toullec, Marta Conde, Pedro Elena, José Mª Heras, Joan Miquel Canals,  Fernando Zamora, 

Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Pagos de Anguix SLU. Camino de la Tejera s/n. 09312-Anguix (Burgos) Spain, Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona. Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain, Departament of Biochemistry & Biotechnology, Facultty of OEnology of Tarragona, University Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain

Contact the author

Keywords

malolactic fermentation, lactobacillus plantarum, Oenococcus oeni, coinoculation, color, phenolic compounds

Citation

Related articles…

Crop load management of newly planted Pinot gris grown in warm climate of California

San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period

The concept of « terroir »: what does that mean ? What is it useful for ? French young adults perception

Far from complicated discussions on the relevant way to define « terroir », this article deals with the social perception that French young adults (aged from 18 to 30) have of this concept and the way it can help them to become wine consumers.

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.