Macrowine 2021
IVES 9 IVES Conference Series 9 In line monitoring of red wine fermentations using ir spectrospcopy

In line monitoring of red wine fermentations using ir spectrospcopy

Abstract

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013). This is primarily to ensure that process conditions are maintained at optimal set points, thus improving consistency, efficiency, and control. Implementation of infrared technology and chemometrics in the wine industry has been extensively studied and has been found to be a suitable method of process monitoring, especially when considered in the context of phenolic extraction. However, these studies have conducted spectroscopic analysis off-line and with highly clarified samples (Aleixandre-Tudo et al., 2018; Cavaglia et al., 2020). For the technology to be more applicable to a real life scenario, a shift towards in-line monitoring must be made. The ultimate aim of this study was the development of an automated sampling and analysis system. This system would allow spectroscopic and chemometric technology to become more commonly in commercial cellars and for precision monitoring of phenolic extraction. May challenges exist when sampling directly from a fermentation tank and these can include high levels of turbidity, pipe blockages, exposure to oxygen, and ensuring that a sample is representative of the contents of the fermentation vessel. Turbidity, in particular, is a concern when utilizing spectroscopic methods as the suspended solids may interfere with the trajectory of the radiation, resulting in abnormal spectra and, therefore, inaccurate measurements. A prototype system making use of a series of filter screens was developed and prototyped to determine whether automated sampling and analysis would be possible in a cellar with multiple tanks and a single instrument. Automation software was developed to initiate the IR scanning and the subsequent analysis of the sample, displaying the results for tannin content, anthocyanin and polymeric pigment content, total phenolic index and colour density graphically for the user or winemaker. In addition to this, chemometric models were built to account for the effect of suspended solids in a fermenting sample. The system, as a whole, showed promise with samples being successfully drawn from the tanks and analysed. Lastly, statistical analysis showed that the chemometric models were robust, accurate and suitable for the intended application.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kiera Nareece Lambrecht 

Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology,Dr José Aleixandre-Tudo, Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology  Prof Wessel Du Toit, Stellenbosch University, South African Grape and Wine Research (SAGWRI) Institute, Department of Viticulture and Oenology

Contact the author

Keywords

in-line monitoring, process control, spectroscopy, chemometrics

Citation

Related articles…

Towards more coherent rules for alcohol labelling in the European Union

In its 2020 beating cancer plan, the european commission announced plans for mandatory warning signs for alcoholic beverages. However, no concrete legislative proposal has been put forward so far. Instead, ireland passed national legislation in 2023 that requires warning signs for all alcoholic beverages from 2026. Despite significant effects for the common market, the eu commission did not this challenge this law in the so-called tris notification procedure. We argue that the commission’s inaction is consistent with the case law of the european court of justice: in the absence of harmonized rules, member states have a large margin of discretion to enact national health measures.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.