Macrowine 2021
IVES 9 IVES Conference Series 9 Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Abstract

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management. Objective of this work was to develop a rapid analysis method using the Absorbance-Transmission and fluorescence Excitation-Emission Matrix (A-TEEM) technique. Polyphenols exhibit characteristic and high fluorescence quantum yields, which makes them highly suitable for this technique. The method’s automatic real-time Inner Filter Effect (IFE) correction allows the quantification of minor compounds (Gilmore et al., 2016). IFE-corrected fluorescence EEM data and the absorbance data were combined, and the spectral data were regressed against the concentrations of 34 anthocyanins, flavan-3-ols, tannins, polymeric pigments, flavonols and hydroxycinnamic acids measured independently by HPLC-DAD and UV-vis. The study focused on comparing Partial Least Squares Regression (PLSR) and Extreme Gradient Boost Regression (XGBR) for the single- (fluorescence EEM or absorbance) and multi- (combined) block data. The calibration set comprised 1133 files acquired from 126 diverse experimental and commercial wines. Validation was carried out on two data sets, first by a 14% randomized sample split from the calibration data keeping instrument replicates together, and thereafter by another independent set of 96 files from 16 wines. As a general trend, validation of the multi-block data models with independent data using XGBR, compared to PLSR, yielded higher prediction correlation coefficients (R2P) and lower Root Mean Square Errors for Prediction (RMSEP). Considering all 34 compound fits, mean R2P of 0.947 with XGBR and of 0.899 with PLSR were obtained. The highest fits were obtained for compounds of the anthocyanin family with mean R2P of 0.974 (XGBR) and 0.954 (PLSR), respectively, while lower fits were found for flavan-3-oles with R2P of 0.878 (XGBR) and 0.771 (PLSR), indicating compound effects due to extraction and chromatographic and spectral analysis methods affecting repeatability and quantification limits. In general, precise model fits were found for compounds > 10 mg/L with R2P between 0.929 and 0.992 (XGBR) and between 0.875 and 0.992 (PLSR). Supplementary, all individual compounds could be identified according to their family by spectral fingerprints. However, these multi-block data sets were also associated with significantly higher R2P (and lower RMSEP) compared to a single block evaluation of the fluorescence EEM or absorbance data only. By using mean-centering and an Extended Mixture Model filter the multi-block data sets fit robustly using both XGBR and PLSR without the need to apply secondary variable selection algorithms. We conclude that analyzing the A-TEEM data using the multi-block organization and the XGBR algorithm facilitates a robust prediction of the key phenolic compound concentrations that strongly influence the Chilean wine quality.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Doreen Schober

Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile,Adam Gilmore, HORIBA Instruments Inc. 20 Knightsbridge Rd., Piscataway, NJ 08854, USA Jorge Zincker, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile Alvaro Gonzalez, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile

Contact the author

Keywords

quality, polyphenols, spectroscopy, a-teem, wine, machine learning

Citation

Related articles…

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.