Macrowine 2021
IVES 9 IVES Conference Series 9 Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Abstract

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management. Objective of this work was to develop a rapid analysis method using the Absorbance-Transmission and fluorescence Excitation-Emission Matrix (A-TEEM) technique. Polyphenols exhibit characteristic and high fluorescence quantum yields, which makes them highly suitable for this technique. The method’s automatic real-time Inner Filter Effect (IFE) correction allows the quantification of minor compounds (Gilmore et al., 2016). IFE-corrected fluorescence EEM data and the absorbance data were combined, and the spectral data were regressed against the concentrations of 34 anthocyanins, flavan-3-ols, tannins, polymeric pigments, flavonols and hydroxycinnamic acids measured independently by HPLC-DAD and UV-vis. The study focused on comparing Partial Least Squares Regression (PLSR) and Extreme Gradient Boost Regression (XGBR) for the single- (fluorescence EEM or absorbance) and multi- (combined) block data. The calibration set comprised 1133 files acquired from 126 diverse experimental and commercial wines. Validation was carried out on two data sets, first by a 14% randomized sample split from the calibration data keeping instrument replicates together, and thereafter by another independent set of 96 files from 16 wines. As a general trend, validation of the multi-block data models with independent data using XGBR, compared to PLSR, yielded higher prediction correlation coefficients (R2P) and lower Root Mean Square Errors for Prediction (RMSEP). Considering all 34 compound fits, mean R2P of 0.947 with XGBR and of 0.899 with PLSR were obtained. The highest fits were obtained for compounds of the anthocyanin family with mean R2P of 0.974 (XGBR) and 0.954 (PLSR), respectively, while lower fits were found for flavan-3-oles with R2P of 0.878 (XGBR) and 0.771 (PLSR), indicating compound effects due to extraction and chromatographic and spectral analysis methods affecting repeatability and quantification limits. In general, precise model fits were found for compounds > 10 mg/L with R2P between 0.929 and 0.992 (XGBR) and between 0.875 and 0.992 (PLSR). Supplementary, all individual compounds could be identified according to their family by spectral fingerprints. However, these multi-block data sets were also associated with significantly higher R2P (and lower RMSEP) compared to a single block evaluation of the fluorescence EEM or absorbance data only. By using mean-centering and an Extended Mixture Model filter the multi-block data sets fit robustly using both XGBR and PLSR without the need to apply secondary variable selection algorithms. We conclude that analyzing the A-TEEM data using the multi-block organization and the XGBR algorithm facilitates a robust prediction of the key phenolic compound concentrations that strongly influence the Chilean wine quality.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Doreen Schober

Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile,Adam Gilmore, HORIBA Instruments Inc. 20 Knightsbridge Rd., Piscataway, NJ 08854, USA Jorge Zincker, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile Alvaro Gonzalez, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile

Contact the author

Keywords

quality, polyphenols, spectroscopy, a-teem, wine, machine learning

Citation

Related articles…

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

Fleurtai, Soreli and Tocai Friulano: perspectives for quality integration of wine together with protection of the DOCG Lison Classico appellation

In modern viticulture, sustainability must be considered not only into the winery, but in the vineyard as well, being that with the most attentive interventions in order to protect the environment. In this context, the new “fungi resistant” varieties represent a valid option for reducing the negative environmental impact of agrochemicals used in viticulture, including those ones used in organic farming (given the copper accumulation into soils). Several application studies have demonstrated the enological validity of many resistant varieties, both in price and as a blend. Also, under the production point of view, the feasibility and economical sustainability of the new resistant varieties was verified. The aim of this work was to deepen the knowledge on the organoleptic characteristics of wines obtained from the Fleurtai and Soreli varieties and to compare them with the wine obtained from Tocai Friulano, the mother variety in the area destined for the production of the Lison Classico DOCG appellation. The purpose of the work is then to verify the possibility of introducing resistant varieties into the DOCG while maintaining the wine name of the appellation linked to the territory.