Macrowine 2021
IVES 9 IVES Conference Series 9 Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Abstract

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management. Objective of this work was to develop a rapid analysis method using the Absorbance-Transmission and fluorescence Excitation-Emission Matrix (A-TEEM) technique. Polyphenols exhibit characteristic and high fluorescence quantum yields, which makes them highly suitable for this technique. The method’s automatic real-time Inner Filter Effect (IFE) correction allows the quantification of minor compounds (Gilmore et al., 2016). IFE-corrected fluorescence EEM data and the absorbance data were combined, and the spectral data were regressed against the concentrations of 34 anthocyanins, flavan-3-ols, tannins, polymeric pigments, flavonols and hydroxycinnamic acids measured independently by HPLC-DAD and UV-vis. The study focused on comparing Partial Least Squares Regression (PLSR) and Extreme Gradient Boost Regression (XGBR) for the single- (fluorescence EEM or absorbance) and multi- (combined) block data. The calibration set comprised 1133 files acquired from 126 diverse experimental and commercial wines. Validation was carried out on two data sets, first by a 14% randomized sample split from the calibration data keeping instrument replicates together, and thereafter by another independent set of 96 files from 16 wines. As a general trend, validation of the multi-block data models with independent data using XGBR, compared to PLSR, yielded higher prediction correlation coefficients (R2P) and lower Root Mean Square Errors for Prediction (RMSEP). Considering all 34 compound fits, mean R2P of 0.947 with XGBR and of 0.899 with PLSR were obtained. The highest fits were obtained for compounds of the anthocyanin family with mean R2P of 0.974 (XGBR) and 0.954 (PLSR), respectively, while lower fits were found for flavan-3-oles with R2P of 0.878 (XGBR) and 0.771 (PLSR), indicating compound effects due to extraction and chromatographic and spectral analysis methods affecting repeatability and quantification limits. In general, precise model fits were found for compounds > 10 mg/L with R2P between 0.929 and 0.992 (XGBR) and between 0.875 and 0.992 (PLSR). Supplementary, all individual compounds could be identified according to their family by spectral fingerprints. However, these multi-block data sets were also associated with significantly higher R2P (and lower RMSEP) compared to a single block evaluation of the fluorescence EEM or absorbance data only. By using mean-centering and an Extended Mixture Model filter the multi-block data sets fit robustly using both XGBR and PLSR without the need to apply secondary variable selection algorithms. We conclude that analyzing the A-TEEM data using the multi-block organization and the XGBR algorithm facilitates a robust prediction of the key phenolic compound concentrations that strongly influence the Chilean wine quality.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Doreen Schober

Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile,Adam Gilmore, HORIBA Instruments Inc. 20 Knightsbridge Rd., Piscataway, NJ 08854, USA Jorge Zincker, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile Alvaro Gonzalez, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile

Contact the author

Keywords

quality, polyphenols, spectroscopy, a-teem, wine, machine learning

Citation

Related articles…

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

Multidisciplinary strategies for understanding ill-defined concepts

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

Long-term flooding effects on the physiological and productive performance of Montepulciano and Sangiovese cultivars

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF. METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity