Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Abstract

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering. This practice increases the concentration of sugars and other solutes and encourages the accumulation of unique aroma compounds in berries. Previous investigations evidenced that the kinetics of grape dehydration highly affects the quality of the produced wine. Along with the well-known effects of the environmental conditions, the cluster and berry morphology have an important role in the determination of the grape water loss rate. However, the relative contribution of each cluster/berry physical trait to the dehydration rate and the possibility to predict the latter parameter in advance, are poorly studied aspects. The aim of this work was to investigate the effect of several grape physical/morphological parameters on the withering kinetic rate, individuating potential predictors of the grapes behavior during postharvest dehydration. Four red wine grape cultivars, Corvina, Corvinone, Cabernet-Sauvignon and Cavrara, were harvested at commercial ripening and their cluster compactness, berry surface area to volume ratio, skin thickness and skin waxes quantity were measured. Furthermore, a novel rapid dehydration test in a controlled forcing environment (50 °C; 400 mbar; 24 h) was applied on grape clusters to assess their intrinsic tendency to lose water. The grapes were then withered for 77 days, under controlled environmental conditions simulating the commercial process, and the dehydration kinetic rates were obtained. Multivariate and correlation analyses were employed to search and score the relation between each measured parameter and the withering kinetic rate. The parameters which were pointed out as good predictors of the grapes water loss attitude were the skin thickness, berry surface area to volume ratio and cluster compactness. However, intra-cultivar analyses performed on Corvina and Corvinone separately have not identified parameters with significant correlations to the withering kinetic rate, likely because of the very low variability observed among accessions of the same cultivar.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ron Shmuleviz 

Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy., Giovanni Battista TORNIELLI, Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy.

Contact the author

Keywords

wine grapes, dehydration kinetics, withering, fruit morphology, amarone

Citation

Related articles…

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.