Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

Abstract

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering. This practice increases the concentration of sugars and other solutes and encourages the accumulation of unique aroma compounds in berries. Previous investigations evidenced that the kinetics of grape dehydration highly affects the quality of the produced wine. Along with the well-known effects of the environmental conditions, the cluster and berry morphology have an important role in the determination of the grape water loss rate. However, the relative contribution of each cluster/berry physical trait to the dehydration rate and the possibility to predict the latter parameter in advance, are poorly studied aspects. The aim of this work was to investigate the effect of several grape physical/morphological parameters on the withering kinetic rate, individuating potential predictors of the grapes behavior during postharvest dehydration. Four red wine grape cultivars, Corvina, Corvinone, Cabernet-Sauvignon and Cavrara, were harvested at commercial ripening and their cluster compactness, berry surface area to volume ratio, skin thickness and skin waxes quantity were measured. Furthermore, a novel rapid dehydration test in a controlled forcing environment (50 °C; 400 mbar; 24 h) was applied on grape clusters to assess their intrinsic tendency to lose water. The grapes were then withered for 77 days, under controlled environmental conditions simulating the commercial process, and the dehydration kinetic rates were obtained. Multivariate and correlation analyses were employed to search and score the relation between each measured parameter and the withering kinetic rate. The parameters which were pointed out as good predictors of the grapes water loss attitude were the skin thickness, berry surface area to volume ratio and cluster compactness. However, intra-cultivar analyses performed on Corvina and Corvinone separately have not identified parameters with significant correlations to the withering kinetic rate, likely because of the very low variability observed among accessions of the same cultivar.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ron Shmuleviz 

Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy., Giovanni Battista TORNIELLI, Department of Biotechnology, University of Verona, Via della Pieve 70, 37029 – San Floriano, San Pietro in Cariano – VR, Italy.

Contact the author

Keywords

wine grapes, dehydration kinetics, withering, fruit morphology, amarone

Citation

Related articles…

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

Irrigation frequency: variation and agronomic and qualitative effects on cv. Tempranillo in the D. O. Ribera del Duero

The application of irrigation in vineyard cultivation continues to be a highly debated aspect in terms of the quantity and distribution of water throughout the vegetative growth period.

Mining belowground and aboveground microbiome data to identify microbial biomarkers of grapevine health and yield

Vineyards are home to a wide diversity of microorganisms that interact with plants and with each other.

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.