Macrowine 2021
IVES 9 IVES Conference Series 9 Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Abstract

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1). Membrane filtration technology is used in wine production for many purposes and ultrafiltration (UF) offers an easily-translatable process for protein removal (1). UF treatment of wine can produce heat-stable permeate and protein-enriched retentate, which enables targeted protein degradation. Heating the retentate, with or without protease significantly improved the heat stability of recombined wine in pilot scale trials (2). This study evaluated strategies for achieving protein stabilisation using membrane filtration.

METHODS: Sauvignon blanc wine (unfined) was fractionated by UF in triplicate, the resulting retentate subjected to protease and heat (62℃, 10 min) treatment, and the treated retentate recombined with the permeate. Traditional bentonite fining was performed as a positive control. Chemical and sensory analyses were carried out to evaluate the efficacy of treatment.

RESULTS: Heating retentate with protease reduced the concentration of haze-forming proteins by 54% compared with heating alone 40%. Chemical analyses and quality scores for recombined wine showed no significant difference with bentonite-fined wines. Sensory analysis indicated that UF/heat-treatment increased the green apple aroma, alcohol heat and overall flavour intensity of the wines compared to bentonite fined wines, suggesting UF-treated wines retained flavour without imparting oxidative characters.

CONCLUSIONS

Ultrafiltration combined with heat and protease treatment can reduce bentonite use without significantly affecting sensory properties. While results are promising, it is not yet a viable alternative to bentonite fining.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yihe Sui

The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production.,David, WOLLAN, VAF Memstar; Australian Research Council Training Centre for Innovative Wine Production –      Jacqui, MCRAE, The University of Adelaide, School of Chemical Engineering and Advanced Materials – Richard, MUHLACK, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production – Peter, GODDEN, The Australian Wine Research Institute –            Kerry, WILKINSON, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Productin

Contact the author

Keywords

white wine heat stability, haze, ultrafiltration, wine protein, protease

Citation

Related articles…

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

A climatic characterisation of the sub-Appellations in the Niagara Peninsula wine region

This study used climatic and topographic data to characterize the sub-appellations that have been recently delineated in the Niagara Peninsula viticulture area in order to assess their potential for ripening early to late season Vitis vinifera varieties. No major differences were found in the ripening-period mean temperatures, but major differences in the diurnal temperature ranges were observed.

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Cultivo de la Malvasia en Tenerife

El archipiélago Canario, conocido en el pasado como las Islas del Vino, fue una gran potencia en la elaboración y comercialización del vino, sobre todo de caldos elaborados con la variedad Malvasía.