Macrowine 2021
IVES 9 IVES Conference Series 9 Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Abstract

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1). Membrane filtration technology is used in wine production for many purposes and ultrafiltration (UF) offers an easily-translatable process for protein removal (1). UF treatment of wine can produce heat-stable permeate and protein-enriched retentate, which enables targeted protein degradation. Heating the retentate, with or without protease significantly improved the heat stability of recombined wine in pilot scale trials (2). This study evaluated strategies for achieving protein stabilisation using membrane filtration.

METHODS: Sauvignon blanc wine (unfined) was fractionated by UF in triplicate, the resulting retentate subjected to protease and heat (62℃, 10 min) treatment, and the treated retentate recombined with the permeate. Traditional bentonite fining was performed as a positive control. Chemical and sensory analyses were carried out to evaluate the efficacy of treatment.

RESULTS: Heating retentate with protease reduced the concentration of haze-forming proteins by 54% compared with heating alone 40%. Chemical analyses and quality scores for recombined wine showed no significant difference with bentonite-fined wines. Sensory analysis indicated that UF/heat-treatment increased the green apple aroma, alcohol heat and overall flavour intensity of the wines compared to bentonite fined wines, suggesting UF-treated wines retained flavour without imparting oxidative characters.

CONCLUSIONS

Ultrafiltration combined with heat and protease treatment can reduce bentonite use without significantly affecting sensory properties. While results are promising, it is not yet a viable alternative to bentonite fining.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yihe Sui

The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production.,David, WOLLAN, VAF Memstar; Australian Research Council Training Centre for Innovative Wine Production –      Jacqui, MCRAE, The University of Adelaide, School of Chemical Engineering and Advanced Materials – Richard, MUHLACK, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production – Peter, GODDEN, The Australian Wine Research Institute –            Kerry, WILKINSON, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Productin

Contact the author

Keywords

white wine heat stability, haze, ultrafiltration, wine protein, protease

Citation

Related articles…

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Red wine astringency: correlations between chemical and sensory features

Astringency is a crucial sensory attribute typically described as the drying and/or puckering sensation occurring after the consumption of tannin-rich foods and beverages. In this study, thirty-seven red wines from different varieties, origins and styles were evaluated, analyzing both chemical and sensory features. Principal Component Analysis was used for dimensionality-reduction and for correlating selected chemical parameters against astringency. The results showed that tannin content was the most important chemical parameter influencing overall astringency but more clearly the dryness sub-quality, followed by pH, titratable acidity and alcohol content.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.