Macrowine 2021
IVES 9 IVES Conference Series 9 Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Abstract

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1). Membrane filtration technology is used in wine production for many purposes and ultrafiltration (UF) offers an easily-translatable process for protein removal (1). UF treatment of wine can produce heat-stable permeate and protein-enriched retentate, which enables targeted protein degradation. Heating the retentate, with or without protease significantly improved the heat stability of recombined wine in pilot scale trials (2). This study evaluated strategies for achieving protein stabilisation using membrane filtration.

METHODS: Sauvignon blanc wine (unfined) was fractionated by UF in triplicate, the resulting retentate subjected to protease and heat (62℃, 10 min) treatment, and the treated retentate recombined with the permeate. Traditional bentonite fining was performed as a positive control. Chemical and sensory analyses were carried out to evaluate the efficacy of treatment.

RESULTS: Heating retentate with protease reduced the concentration of haze-forming proteins by 54% compared with heating alone 40%. Chemical analyses and quality scores for recombined wine showed no significant difference with bentonite-fined wines. Sensory analysis indicated that UF/heat-treatment increased the green apple aroma, alcohol heat and overall flavour intensity of the wines compared to bentonite fined wines, suggesting UF-treated wines retained flavour without imparting oxidative characters.

CONCLUSIONS

Ultrafiltration combined with heat and protease treatment can reduce bentonite use without significantly affecting sensory properties. While results are promising, it is not yet a viable alternative to bentonite fining.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yihe Sui

The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production.,David, WOLLAN, VAF Memstar; Australian Research Council Training Centre for Innovative Wine Production –      Jacqui, MCRAE, The University of Adelaide, School of Chemical Engineering and Advanced Materials – Richard, MUHLACK, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production – Peter, GODDEN, The Australian Wine Research Institute –            Kerry, WILKINSON, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Productin

Contact the author

Keywords

white wine heat stability, haze, ultrafiltration, wine protein, protease

Citation

Related articles…

Market entry strategies in the U.S. alcohol distribution: The case of French wine exporters

This study examines the different strategies adopted by wine exporters located in France for penetrating international alcohol distribution networks in the U.S. market (and to a lesser extent the Canadian market). Grounded in the Business-to-Business (B2B) marketing literature (Ellegaard and Medlin, 2018), this study adopts a framework integrating a ‘Stakeholder’ approach for understanding the logics behind exporters’ strategies to penetrate the alcohol distribution networks (wholesalers, importers, alcohol monopolies).

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

The influence of irrigation and crop load management on berry composition and yield in Chardonnay

Australian grape producers are facing a difficult wine market, therefore a reduction of vineyard production costs is critical.

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.