Macrowine 2021
IVES 9 IVES Conference Series 9 Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

Abstract

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1). Membrane filtration technology is used in wine production for many purposes and ultrafiltration (UF) offers an easily-translatable process for protein removal (1). UF treatment of wine can produce heat-stable permeate and protein-enriched retentate, which enables targeted protein degradation. Heating the retentate, with or without protease significantly improved the heat stability of recombined wine in pilot scale trials (2). This study evaluated strategies for achieving protein stabilisation using membrane filtration.

METHODS: Sauvignon blanc wine (unfined) was fractionated by UF in triplicate, the resulting retentate subjected to protease and heat (62℃, 10 min) treatment, and the treated retentate recombined with the permeate. Traditional bentonite fining was performed as a positive control. Chemical and sensory analyses were carried out to evaluate the efficacy of treatment.

RESULTS: Heating retentate with protease reduced the concentration of haze-forming proteins by 54% compared with heating alone 40%. Chemical analyses and quality scores for recombined wine showed no significant difference with bentonite-fined wines. Sensory analysis indicated that UF/heat-treatment increased the green apple aroma, alcohol heat and overall flavour intensity of the wines compared to bentonite fined wines, suggesting UF-treated wines retained flavour without imparting oxidative characters.

CONCLUSIONS

Ultrafiltration combined with heat and protease treatment can reduce bentonite use without significantly affecting sensory properties. While results are promising, it is not yet a viable alternative to bentonite fining.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yihe Sui

The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production.,David, WOLLAN, VAF Memstar; Australian Research Council Training Centre for Innovative Wine Production –      Jacqui, MCRAE, The University of Adelaide, School of Chemical Engineering and Advanced Materials – Richard, MUHLACK, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Production – Peter, GODDEN, The Australian Wine Research Institute –            Kerry, WILKINSON, The University of Adelaide, School of Agriculture, Food and Wine; Australian Research Council Training Centre for Innovative Wine Productin

Contact the author

Keywords

white wine heat stability, haze, ultrafiltration, wine protein, protease

Citation

Related articles…

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Enhancing vineyard resilience: three years of weather-based disease modeling in Moldova’s precision viticulture

Due to ongoing climate change, managing vineyard diseases has become increasingly challenging in the Republic of Moldova.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.