Macrowine 2021
IVES 9 IVES Conference Series 9 High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

Abstract

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods. High Hydrostatic Pressure (HHP), High Pressure Homogenization (HPH) and Ultra-High Pressure Homogenization (UHPH) are gaining increasing interest in wine industry, for their ability to inactivate microorganisms [1-3], improve the extraction of color and phenolic compounds from grapes [4,5] and to induce yeast autolysis [6] potentially accelerating wine ageing on lees (AOL). This work aims at evaluating the possibility of accelerating AOL of white wines by HPH processing of fermentation lees, considering the effects of the treatment on microbial populations, wine composition, sensory and aroma profile, as well as the potential impact on wine filterability.

METHODS: Lees were collected at the end of alcoholic fermentation (fresh lees) and after six months of ageing (aged lees) and processed by HPH at 60 and 150 MPa (1 and 2 passes). The effects on microbial populations and the release of polysaccharides were evaluated in comparison with untreated samples and β-glucanase addition. The modifications induced on yeast cells were also investigated by Transmission Electronic Microscopy. Treated lees were added (5 % v/v) to a white wine and samples were analyzed after one and six months of AOL, concerning polysaccharide content, microbial composition, basic chemical parameters, aroma and sensory profile. Finally, to assess the impact of HPH on wine filterability, the Particle Size Distribution of colloidal particles and a filtration test were determined at the end of ageing period.

RESULTS: HPH favored the release of polysaccharides from lees, with a higher efficiency if lees are treated immediately after alcoholic fermentation (fresh lees), revealing to be averagely more efficient than β-glucanase enzymes. HPH also determined a significant reduction of viable yeasts and lactic bacteria in treated lees, potentially allowing to reduce the use of sulfur dioxide during AOL; the effects on microorganisms were dependent on the pressure applied and the number of passes. High pressure treatments provoked a complete disruption of yeast cells, forming cell debris with a greater particle size with respect to what detected in untreated samples or in the lees treated with enzymes. This determined the formation of a persistent haze in lees samples. The effect of this particles on wine filterability was negligible if the pressure applied during lees treatment was low, but filtration became more difficult as operating pressure and number of passes increased.

CONCLUSIONS

High pressure techniques represent an interesting perspective for the application investigated in the present study. The possibility of their exploitation at winery scale requires the identification of suitable operating conditions and the evaluation of the economic aspects connected with their scale-up at industrial level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Piergiorgio Comuzzo

Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy),Sabrina VOCE Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Lucilla IACUMIN Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Rita MUSETTI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Gabriele CHINNI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Giovanni CARRANO Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Marco MARCONI JU.CLA.S. S.r.l., via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy  Gianmaria ZANELLA Enologica Vason S.p.A., via Nassar 37, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

hph; emerging technologies; ageing on lees; microbial inactivation; wine polysaccharides; sulfur dioxide decrease; filtration

Citation

Related articles…

French wine sector facing climate change (part. 2) : the implementation of the national strategy

This summary follows this made by Hervé Hannin et al. Entitled “French wine sector facing climate change (part. 1) : a national strategy built on a foresight and participatory approach “. The french wine sector has taken a collective approach to the issue of climate change, and has officially submitted its strategy to the minister of agriculture in 2021. This industry policy is the result of multidisciplinary work carried out through the “laccave” project (metaprogramme accaf, inrae) and its prospective study designed to anticipate climate change in the french wine industry (aigrain p. Et al., 2016). French wine professionals decided to structure a strategy to deal with climate change du in particular to the presentation made at the 2016 OIV congress in Brazil.

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).

Decline of new vineyards in Southern Spain

In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).