Macrowine 2021
IVES 9 IVES Conference Series 9 High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

Abstract

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods. High Hydrostatic Pressure (HHP), High Pressure Homogenization (HPH) and Ultra-High Pressure Homogenization (UHPH) are gaining increasing interest in wine industry, for their ability to inactivate microorganisms [1-3], improve the extraction of color and phenolic compounds from grapes [4,5] and to induce yeast autolysis [6] potentially accelerating wine ageing on lees (AOL). This work aims at evaluating the possibility of accelerating AOL of white wines by HPH processing of fermentation lees, considering the effects of the treatment on microbial populations, wine composition, sensory and aroma profile, as well as the potential impact on wine filterability.

METHODS: Lees were collected at the end of alcoholic fermentation (fresh lees) and after six months of ageing (aged lees) and processed by HPH at 60 and 150 MPa (1 and 2 passes). The effects on microbial populations and the release of polysaccharides were evaluated in comparison with untreated samples and β-glucanase addition. The modifications induced on yeast cells were also investigated by Transmission Electronic Microscopy. Treated lees were added (5 % v/v) to a white wine and samples were analyzed after one and six months of AOL, concerning polysaccharide content, microbial composition, basic chemical parameters, aroma and sensory profile. Finally, to assess the impact of HPH on wine filterability, the Particle Size Distribution of colloidal particles and a filtration test were determined at the end of ageing period.

RESULTS: HPH favored the release of polysaccharides from lees, with a higher efficiency if lees are treated immediately after alcoholic fermentation (fresh lees), revealing to be averagely more efficient than β-glucanase enzymes. HPH also determined a significant reduction of viable yeasts and lactic bacteria in treated lees, potentially allowing to reduce the use of sulfur dioxide during AOL; the effects on microorganisms were dependent on the pressure applied and the number of passes. High pressure treatments provoked a complete disruption of yeast cells, forming cell debris with a greater particle size with respect to what detected in untreated samples or in the lees treated with enzymes. This determined the formation of a persistent haze in lees samples. The effect of this particles on wine filterability was negligible if the pressure applied during lees treatment was low, but filtration became more difficult as operating pressure and number of passes increased.

CONCLUSIONS

High pressure techniques represent an interesting perspective for the application investigated in the present study. The possibility of their exploitation at winery scale requires the identification of suitable operating conditions and the evaluation of the economic aspects connected with their scale-up at industrial level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Piergiorgio Comuzzo

Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy),Sabrina VOCE Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Lucilla IACUMIN Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Rita MUSETTI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Gabriele CHINNI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Giovanni CARRANO Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Marco MARCONI JU.CLA.S. S.r.l., via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy  Gianmaria ZANELLA Enologica Vason S.p.A., via Nassar 37, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

hph; emerging technologies; ageing on lees; microbial inactivation; wine polysaccharides; sulfur dioxide decrease; filtration

Citation

Related articles…

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.