Macrowine 2021
IVES 9 IVES Conference Series 9 High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

Abstract

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods. High Hydrostatic Pressure (HHP), High Pressure Homogenization (HPH) and Ultra-High Pressure Homogenization (UHPH) are gaining increasing interest in wine industry, for their ability to inactivate microorganisms [1-3], improve the extraction of color and phenolic compounds from grapes [4,5] and to induce yeast autolysis [6] potentially accelerating wine ageing on lees (AOL). This work aims at evaluating the possibility of accelerating AOL of white wines by HPH processing of fermentation lees, considering the effects of the treatment on microbial populations, wine composition, sensory and aroma profile, as well as the potential impact on wine filterability.

METHODS: Lees were collected at the end of alcoholic fermentation (fresh lees) and after six months of ageing (aged lees) and processed by HPH at 60 and 150 MPa (1 and 2 passes). The effects on microbial populations and the release of polysaccharides were evaluated in comparison with untreated samples and β-glucanase addition. The modifications induced on yeast cells were also investigated by Transmission Electronic Microscopy. Treated lees were added (5 % v/v) to a white wine and samples were analyzed after one and six months of AOL, concerning polysaccharide content, microbial composition, basic chemical parameters, aroma and sensory profile. Finally, to assess the impact of HPH on wine filterability, the Particle Size Distribution of colloidal particles and a filtration test were determined at the end of ageing period.

RESULTS: HPH favored the release of polysaccharides from lees, with a higher efficiency if lees are treated immediately after alcoholic fermentation (fresh lees), revealing to be averagely more efficient than β-glucanase enzymes. HPH also determined a significant reduction of viable yeasts and lactic bacteria in treated lees, potentially allowing to reduce the use of sulfur dioxide during AOL; the effects on microorganisms were dependent on the pressure applied and the number of passes. High pressure treatments provoked a complete disruption of yeast cells, forming cell debris with a greater particle size with respect to what detected in untreated samples or in the lees treated with enzymes. This determined the formation of a persistent haze in lees samples. The effect of this particles on wine filterability was negligible if the pressure applied during lees treatment was low, but filtration became more difficult as operating pressure and number of passes increased.

CONCLUSIONS

High pressure techniques represent an interesting perspective for the application investigated in the present study. The possibility of their exploitation at winery scale requires the identification of suitable operating conditions and the evaluation of the economic aspects connected with their scale-up at industrial level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Piergiorgio Comuzzo

Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy),Sabrina VOCE Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Lucilla IACUMIN Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Rita MUSETTI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Gabriele CHINNI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Giovanni CARRANO Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Marco MARCONI JU.CLA.S. S.r.l., via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy  Gianmaria ZANELLA Enologica Vason S.p.A., via Nassar 37, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

hph; emerging technologies; ageing on lees; microbial inactivation; wine polysaccharides; sulfur dioxide decrease; filtration

Citation

Related articles…

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes.

Perceptive interactions and wine typical fruity aroma 

In this study we developed a methodology to prepare aromatic reconstitutions from fractions of a wine organic extract and we assessed these reconstitutions both in wine model solution and in de- aromatized wine.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.