Macrowine 2021
IVES 9 IVES Conference Series 9 High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

Abstract

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods. High Hydrostatic Pressure (HHP), High Pressure Homogenization (HPH) and Ultra-High Pressure Homogenization (UHPH) are gaining increasing interest in wine industry, for their ability to inactivate microorganisms [1-3], improve the extraction of color and phenolic compounds from grapes [4,5] and to induce yeast autolysis [6] potentially accelerating wine ageing on lees (AOL). This work aims at evaluating the possibility of accelerating AOL of white wines by HPH processing of fermentation lees, considering the effects of the treatment on microbial populations, wine composition, sensory and aroma profile, as well as the potential impact on wine filterability.

METHODS: Lees were collected at the end of alcoholic fermentation (fresh lees) and after six months of ageing (aged lees) and processed by HPH at 60 and 150 MPa (1 and 2 passes). The effects on microbial populations and the release of polysaccharides were evaluated in comparison with untreated samples and β-glucanase addition. The modifications induced on yeast cells were also investigated by Transmission Electronic Microscopy. Treated lees were added (5 % v/v) to a white wine and samples were analyzed after one and six months of AOL, concerning polysaccharide content, microbial composition, basic chemical parameters, aroma and sensory profile. Finally, to assess the impact of HPH on wine filterability, the Particle Size Distribution of colloidal particles and a filtration test were determined at the end of ageing period.

RESULTS: HPH favored the release of polysaccharides from lees, with a higher efficiency if lees are treated immediately after alcoholic fermentation (fresh lees), revealing to be averagely more efficient than β-glucanase enzymes. HPH also determined a significant reduction of viable yeasts and lactic bacteria in treated lees, potentially allowing to reduce the use of sulfur dioxide during AOL; the effects on microorganisms were dependent on the pressure applied and the number of passes. High pressure treatments provoked a complete disruption of yeast cells, forming cell debris with a greater particle size with respect to what detected in untreated samples or in the lees treated with enzymes. This determined the formation of a persistent haze in lees samples. The effect of this particles on wine filterability was negligible if the pressure applied during lees treatment was low, but filtration became more difficult as operating pressure and number of passes increased.

CONCLUSIONS

High pressure techniques represent an interesting perspective for the application investigated in the present study. The possibility of their exploitation at winery scale requires the identification of suitable operating conditions and the evaluation of the economic aspects connected with their scale-up at industrial level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Piergiorgio Comuzzo

Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy),Sabrina VOCE Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Lucilla IACUMIN Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Rita MUSETTI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Gabriele CHINNI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Giovanni CARRANO Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Marco MARCONI JU.CLA.S. S.r.l., via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy  Gianmaria ZANELLA Enologica Vason S.p.A., via Nassar 37, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

hph; emerging technologies; ageing on lees; microbial inactivation; wine polysaccharides; sulfur dioxide decrease; filtration

Citation

Related articles…

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.