Macrowine 2021
IVES 9 IVES Conference Series 9 High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

Abstract

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods. High Hydrostatic Pressure (HHP), High Pressure Homogenization (HPH) and Ultra-High Pressure Homogenization (UHPH) are gaining increasing interest in wine industry, for their ability to inactivate microorganisms [1-3], improve the extraction of color and phenolic compounds from grapes [4,5] and to induce yeast autolysis [6] potentially accelerating wine ageing on lees (AOL). This work aims at evaluating the possibility of accelerating AOL of white wines by HPH processing of fermentation lees, considering the effects of the treatment on microbial populations, wine composition, sensory and aroma profile, as well as the potential impact on wine filterability.

METHODS: Lees were collected at the end of alcoholic fermentation (fresh lees) and after six months of ageing (aged lees) and processed by HPH at 60 and 150 MPa (1 and 2 passes). The effects on microbial populations and the release of polysaccharides were evaluated in comparison with untreated samples and β-glucanase addition. The modifications induced on yeast cells were also investigated by Transmission Electronic Microscopy. Treated lees were added (5 % v/v) to a white wine and samples were analyzed after one and six months of AOL, concerning polysaccharide content, microbial composition, basic chemical parameters, aroma and sensory profile. Finally, to assess the impact of HPH on wine filterability, the Particle Size Distribution of colloidal particles and a filtration test were determined at the end of ageing period.

RESULTS: HPH favored the release of polysaccharides from lees, with a higher efficiency if lees are treated immediately after alcoholic fermentation (fresh lees), revealing to be averagely more efficient than β-glucanase enzymes. HPH also determined a significant reduction of viable yeasts and lactic bacteria in treated lees, potentially allowing to reduce the use of sulfur dioxide during AOL; the effects on microorganisms were dependent on the pressure applied and the number of passes. High pressure treatments provoked a complete disruption of yeast cells, forming cell debris with a greater particle size with respect to what detected in untreated samples or in the lees treated with enzymes. This determined the formation of a persistent haze in lees samples. The effect of this particles on wine filterability was negligible if the pressure applied during lees treatment was low, but filtration became more difficult as operating pressure and number of passes increased.

CONCLUSIONS

High pressure techniques represent an interesting perspective for the application investigated in the present study. The possibility of their exploitation at winery scale requires the identification of suitable operating conditions and the evaluation of the economic aspects connected with their scale-up at industrial level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Piergiorgio Comuzzo

Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy),Sabrina VOCE Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Lucilla IACUMIN Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Rita MUSETTI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Gabriele CHINNI Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Giovanni CARRANO Università degli Studi di Udine – Dipartimento di Scienze Agroalimentari, Ambientali e Animali, via Sondrio, 2/A, 33100, Udine (Italy)  Marco MARCONI JU.CLA.S. S.r.l., via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy  Gianmaria ZANELLA Enologica Vason S.p.A., via Nassar 37, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

hph; emerging technologies; ageing on lees; microbial inactivation; wine polysaccharides; sulfur dioxide decrease; filtration

Citation

Related articles…

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Classification of the wine-growing environment of Central Mancha (Spain). First works

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Environmental protection by means of (“Great”) vitiviniculture zonation

In the paper is discussed the first example of environmental protection, agreed in a wide term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake