Macrowine 2021
IVES 9 IVES Conference Series 9 The aroma diversity of italian white wines

The aroma diversity of italian white wines

Abstract

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference. Italy produces dry still white wines from native grape varieties and geographically defined areas, representing different grapegrowing, winemaking and cultural heritages. The related chemical and sensory elements, the relevant pathways and variables, and the factors associated with their olfactive perception are in large part not known. Altogether, this limits the implementation of production and marketing strategies truly based on the specificity of Italian white wines, with reduced competitiveness and sustainability. The aim of this project is to provide, by means of chemical and sensory approaches, a comprehensive characterization of the chemosensory diversity of Italian white wines.

METHODS: The project will focus on wines of the following appellations/varieties: Arneis, Albana, Erbaluce, Falanghina Fiano, Garganega, Greco di Tufo, Lugana, Nosiola, Pinot Grigio, Ribolla, Traminer aromatico, Trebbiano d’Abruzzo Verdicchio, Vernaccia di San Gimignano, Vermentino. Samples will be collected directly from wineries. About 20 wines will be collected for each appellation/variety. Analyses will include GC-MS and GC-O for the identification and quantification of the most potent impact odorants of each wine type, HPLC, SDS-PAGE, and UV-Vis for the quantification of non-volatile components, E-nose untargeted fast profiling of wine volatile composition, sensory evaluation by means of both rapid and descriptive methodologies. The main pathways of formation of the most relevant aroma compounds will be investigated, as well as their interactions with non-volatile components. Chemoperception mechanisms of selected key odorants will also be studied at the level of receptor-ligand interactions.

RESULTS: The chemical and sensory drivers of Italian white wine intrinsic and perceived diversity will be established, enabling optimized management of winemaking procedures, sustainable long-term strategies for geographical indication protection, tailored marketing and consumers response strategies and preferences. 

ACKNOWLEDGMENTS:

 This project is funded by Italian Ministry of Education and Research (MIUR), PRIN 2017.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 

University of Verona, Italy,Matteo MARANGON, University of Padova, Italy Fulvio MATTIVI, University of Trento, Italy Giuseppina Paola PARPINELLO, University of Bologna, Italy Paola PIOMBINO, University of Naples, Italy Luca ROLLE, University of Turin, Italy

Contact the author

Keywords

italian white wines, aroma

Citation

Related articles…

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.

Vine nitrogen status and the terroir effect: a study on cv. Doral in the Vaud vineyard (Switzerland)

A 3-year study was conducted in the Vaud vineyard (Switzerland) to evaluate the effects of « terroir » on the ecophysiology and fruit compostion of Vitis vinifera L. cv.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.