Macrowine 2021
IVES 9 IVES Conference Series 9 The aroma diversity of italian white wines

The aroma diversity of italian white wines

Abstract

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference. Italy produces dry still white wines from native grape varieties and geographically defined areas, representing different grapegrowing, winemaking and cultural heritages. The related chemical and sensory elements, the relevant pathways and variables, and the factors associated with their olfactive perception are in large part not known. Altogether, this limits the implementation of production and marketing strategies truly based on the specificity of Italian white wines, with reduced competitiveness and sustainability. The aim of this project is to provide, by means of chemical and sensory approaches, a comprehensive characterization of the chemosensory diversity of Italian white wines.

METHODS: The project will focus on wines of the following appellations/varieties: Arneis, Albana, Erbaluce, Falanghina Fiano, Garganega, Greco di Tufo, Lugana, Nosiola, Pinot Grigio, Ribolla, Traminer aromatico, Trebbiano d’Abruzzo Verdicchio, Vernaccia di San Gimignano, Vermentino. Samples will be collected directly from wineries. About 20 wines will be collected for each appellation/variety. Analyses will include GC-MS and GC-O for the identification and quantification of the most potent impact odorants of each wine type, HPLC, SDS-PAGE, and UV-Vis for the quantification of non-volatile components, E-nose untargeted fast profiling of wine volatile composition, sensory evaluation by means of both rapid and descriptive methodologies. The main pathways of formation of the most relevant aroma compounds will be investigated, as well as their interactions with non-volatile components. Chemoperception mechanisms of selected key odorants will also be studied at the level of receptor-ligand interactions.

RESULTS: The chemical and sensory drivers of Italian white wine intrinsic and perceived diversity will be established, enabling optimized management of winemaking procedures, sustainable long-term strategies for geographical indication protection, tailored marketing and consumers response strategies and preferences. 

ACKNOWLEDGMENTS:

 This project is funded by Italian Ministry of Education and Research (MIUR), PRIN 2017.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 

University of Verona, Italy,Matteo MARANGON, University of Padova, Italy Fulvio MATTIVI, University of Trento, Italy Giuseppina Paola PARPINELLO, University of Bologna, Italy Paola PIOMBINO, University of Naples, Italy Luca ROLLE, University of Turin, Italy

Contact the author

Keywords

italian white wines, aroma

Citation

Related articles…

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Estimation of degree brix in grapes by proximal hyperspectral sensing and nanosatellite imagery through the random forest regressor

The assessment of physiological parameters in vineyards can be done by direct measurements or by remote, indirect methods. The latter option frequently yields useful data, and development of methods and techniques that make them possible is worthwhile. One of the parameters most looked for to define the quality status of a vineyard is the degree Brix of its grapes, a quantity usually determined by direct measurement.