Macrowine 2021
IVES 9 IVES Conference Series 9 Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

Abstract

In the maceration stage of winemaking, enzymes can be used to degrade the polysaccharides present in the cell walls and middle sheets, and thus facilitate the extraction of juice and the release of polyphenols and aroma precursors retained in the grape skins. This work aims to analyze the influence of two enzyme complexes produced by autochthonous yeasts on the red winemaking process, in order to evaluate their effect on the chemical composition of the wines obtained, as well as on the extraction of color and polyphenols, and the depletion of the skin. Two strains previously selected for the effect of their enzymatic complex on the color extraction and improvement in the technological properties of the grape must were used (Longhi et al., 2019). A multi-enzymatic extract from Aureobasidium pullulans m11-2 was obtained by inoculating the microorganism in a broth according to Moyo et al. (2003) with modifications (pH 3.8) and incubated with stirring at 28°C for 72 h. Pectinase, xylanase, cellulase and amylase activities were quantified by determining reducing sugars by DNS, modified by Qian Li et al. (2015). Likewise, Torulaspora delbrueckii m7-2 was used for the production of the enzyme complex during vinification. Malbec red grapes (Vitis vinifera L.) from San Rafael (Mendoza) wine region, vintage 2021, were used to conduct the vinifications. The must obtained by crushing 60 Kg of grapes was corrected in acidity, sulfited (50 ppm) and distributed in 5 L containers. Four winemaking assays were performed, in duplicate: (1) inoculation with a native strain of Sacchromyces cerevisiae (SR1), at 108 cell/mL as inoculum, conducted at 20°C (control, C); (2) sequential inoculation of T. delbrueckii m7-2, with an initial cellular concentration of 107 cells/mL, followed by SR1 inoculation at 4th day (Td); (3) cold pre-fermentation maceration (CPM, 8°C-4 days) with m11-2 enzyme extract and SR1 inoculation (Ap); and (4) CPM without enzymatic treatment and SR1 inoculation (E). Growth kinetics of total yeasts were determined on YPD and DRBC agar, and of non-Saccharomyces yeasts in lysine medium. All enzymatic activities were monitored at pH 3.80 and 20°C. The pectinolytic activity was the main one, showing a level of 1.80 U/mL in the m11-2 extract and an initial level of 1.47 U/mL for the in situ producer strain (m7-2). Microscopic observations of the extracted skins in Ap and E vinifications were carried out to evaluate the effect of the enzymatic complex m11-2 on the cell wall, and were also compared with the fresh grape skins. Differences were observed between the skins enzymatically treated (Ap) and the control (E); the former showed cell emptying, greater rupture of the epidermis layers and less firmness, unlike the control that exhibited almost intact epidermal layers. These images allowed us to know the cell morphology of the varietal cv. Malbec and the enzymatic hydrolysis of its cell walls.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Jaquelina Longhi 

 Biotechnology Laboratory, Department of Biology and Food, Faculty of Sciences Applied to Industry, National University of Cuyo. Bernardo de Irigoyen 375, San Rafael, Mendoza, Argentina. National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Autonomous City of Buenos Aires, Argentina. ,María Carolina MARTÍN (1,2)  María Belén AVENDAÑO(1) María Gabriela MERÍN (1,2)   Luciana Paola PRENDES (1,2) Juliana GARAU (1,2) Vilma Inés MORATA DE AMBROSINI (1,2) (1) Biotechnology Laboratory, Department of Biology and Food, Faculty of Sciences Applied to Industry, National University of Cuyo. Bernardo de Irigoyen 375, San Rafael, Mendoza, Argentina. (2) National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Autonomous City of Buenos Aires, Argentina

Contact the author

Keywords

polysaccharidases, winemaking, polyphenols, malbec, grape cell wall

Citation

Related articles…

A climatic characterisation of the sub-Appellations in the Niagara Peninsula wine region

This study used climatic and topographic data to characterize the sub-appellations that have been recently delineated in the Niagara Peninsula viticulture area in order to assess their potential for ripening early to late season Vitis vinifera varieties. No major differences were found in the ripening-period mean temperatures, but major differences in the diurnal temperature ranges were observed.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.

Methodological approach to zoning

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).