Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic investigations of the sulfite addition on flavanols

Kinetic investigations of the sulfite addition on flavanols

Abstract

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2]. Since the mechanism of their formation is still unknown, the aim of this work was to investigate the behaviour of wine monomeric and oligomeric and polymeric flavanols in the presence of SO2, through the evaluation of the kinetic parameters of the monomeric and dimeric flavanols sulfonation at the wine pH.The experimental design considered two different pH (3 and 4) and at five different temperature values (23, 30, 40, 50 and 60 oC), in order to study the reaction products obtained by SO2 addition to both monomeric (epicatechin and catechin) and dimeric flavanols (procyanidin B2 and procyanidin B3). The quantitative measurements were carried out by using a UHPLC-QTOF-MS instrument. The results demonstrated that [3]:a) the major sulfonation route that leads quickly and in good yields to monomeric 4β-sulfonated derivatives passes through the acid-catalysed depolymerisation of proanthocyanidins; b) monomeric flavanols lead with a significantly slower process to the same 4β-sulfonated products; c) kinetic data in our hands, in particular the temperature dependence of the observed rates, suggest the involvement of two completely different reaction mechanisms for the SO2 addition to dimeric and monomeric flavanol substrates; d) the direct sulfonation of epicatechin is slightly faster with respect to catechin.In conclusion, this new knowledge provides essential information in order to better understand tannin chemistry in food and predict or model the chemical/sensorial behaviour of wine or other food rich in proanthocyanidins.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas 1, Federico BONALDO 2, Fulvio MATTIVI 2, Graziano GUELLA 2

1 Fondazione Edmund Mach, San Michele all’Adige, Italy.
2 University of Trento, Trento, Italy.

Contact the author

Keywords

proanthocyanidins; tannins; sulfonation

Citation

Related articles…

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.

Current climate change in the Oplenac wine-growing district (Serbia)

Serbian autochthonous vine varieties Smederevka (for white wines) and Prokupac (for rosé and red wines) are the primary representatives of typical characteristics of wines and terroir of numerous wine-growing areas in Serbia. In the past, these varieties were the leading vine varieties, however, as the result of globalization of winemaking and the trend of consumption of wines from widely prevalent vine varieties, they were replaced by introduced international varieties. Smederevka and Prokupac vine varieties are characterized by later time of grape ripening, and relative sensitivity to low temperatures. Climate conditions can be a restrictive factor for production of high-quality grapes and wine and for the spatial spreading of these varieties in hilly continental wine-growing areas.
This paper focuses on the spatial analysis of changes of main climate parameters, in particular, analysis of viticultural bioclimatic indices that were determined for the purposes of viticulture zoning of wine-growing areas in the period 1961-2010, and those same parameters determined for the current, that is, referential climate period (1988-2017). Results of the research, that is, analysis of climate changes indicate that the majority of examined climate parameters in the Oplenac wine-growing district improved from the perspective of Smederevka and Prokupac vine varieties. These studies of climate conditions indicate that changes of analyzed climate parameters, that is, bioclimatic indices will be favorable for cultivation of varieties with later grape ripening times and those more sensitive to low temperatures, such as the autochthonous vine varieties Smederevka and Prokupac, therefore, it is recommended to producers to more actively plant vineyards with these varieties in the territory of the Oplenac wine-growing district.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).