Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic investigations of the sulfite addition on flavanols

Kinetic investigations of the sulfite addition on flavanols

Abstract

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2]. Since the mechanism of their formation is still unknown, the aim of this work was to investigate the behaviour of wine monomeric and oligomeric and polymeric flavanols in the presence of SO2, through the evaluation of the kinetic parameters of the monomeric and dimeric flavanols sulfonation at the wine pH.The experimental design considered two different pH (3 and 4) and at five different temperature values (23, 30, 40, 50 and 60 oC), in order to study the reaction products obtained by SO2 addition to both monomeric (epicatechin and catechin) and dimeric flavanols (procyanidin B2 and procyanidin B3). The quantitative measurements were carried out by using a UHPLC-QTOF-MS instrument. The results demonstrated that [3]:a) the major sulfonation route that leads quickly and in good yields to monomeric 4β-sulfonated derivatives passes through the acid-catalysed depolymerisation of proanthocyanidins; b) monomeric flavanols lead with a significantly slower process to the same 4β-sulfonated products; c) kinetic data in our hands, in particular the temperature dependence of the observed rates, suggest the involvement of two completely different reaction mechanisms for the SO2 addition to dimeric and monomeric flavanol substrates; d) the direct sulfonation of epicatechin is slightly faster with respect to catechin.In conclusion, this new knowledge provides essential information in order to better understand tannin chemistry in food and predict or model the chemical/sensorial behaviour of wine or other food rich in proanthocyanidins.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas 1, Federico BONALDO 2, Fulvio MATTIVI 2, Graziano GUELLA 2

1 Fondazione Edmund Mach, San Michele all’Adige, Italy.
2 University of Trento, Trento, Italy.

Contact the author

Keywords

proanthocyanidins; tannins; sulfonation

Citation

Related articles…

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Étude de la variabilité des facteurs naturels du terroir viticole, à travers une gamme d’A.O.C. en Anjou (France)

Un programme de recherche concernant les facteurs naturels et humains des terroirs viticoles a été développé dans le vignoble A.O.C. de l’Anjou, sur une surface d’environ 30.000 Ha

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.