Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic investigations of the sulfite addition on flavanols

Kinetic investigations of the sulfite addition on flavanols

Abstract

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2]. Since the mechanism of their formation is still unknown, the aim of this work was to investigate the behaviour of wine monomeric and oligomeric and polymeric flavanols in the presence of SO2, through the evaluation of the kinetic parameters of the monomeric and dimeric flavanols sulfonation at the wine pH.The experimental design considered two different pH (3 and 4) and at five different temperature values (23, 30, 40, 50 and 60 oC), in order to study the reaction products obtained by SO2 addition to both monomeric (epicatechin and catechin) and dimeric flavanols (procyanidin B2 and procyanidin B3). The quantitative measurements were carried out by using a UHPLC-QTOF-MS instrument. The results demonstrated that [3]:a) the major sulfonation route that leads quickly and in good yields to monomeric 4β-sulfonated derivatives passes through the acid-catalysed depolymerisation of proanthocyanidins; b) monomeric flavanols lead with a significantly slower process to the same 4β-sulfonated products; c) kinetic data in our hands, in particular the temperature dependence of the observed rates, suggest the involvement of two completely different reaction mechanisms for the SO2 addition to dimeric and monomeric flavanol substrates; d) the direct sulfonation of epicatechin is slightly faster with respect to catechin.In conclusion, this new knowledge provides essential information in order to better understand tannin chemistry in food and predict or model the chemical/sensorial behaviour of wine or other food rich in proanthocyanidins.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas 1, Federico BONALDO 2, Fulvio MATTIVI 2, Graziano GUELLA 2

1 Fondazione Edmund Mach, San Michele all’Adige, Italy.
2 University of Trento, Trento, Italy.

Contact the author

Keywords

proanthocyanidins; tannins; sulfonation

Citation

Related articles…

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.

SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.

Fertility assessment in Vitis vinifera L., cv. Alvarinho

The Portuguese wine production is characterized by wide yield fluctuations, causing considerable implications in the economic performance of this sector. The possibility of predicting the yield in advance is crucial as it enables preliminary planning and management of the available resources. The present work aims to study and evaluate two different techniques for the assessment of vine fertility. vineyards.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.