Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic investigations of the sulfite addition on flavanols

Kinetic investigations of the sulfite addition on flavanols

Abstract

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2]. Since the mechanism of their formation is still unknown, the aim of this work was to investigate the behaviour of wine monomeric and oligomeric and polymeric flavanols in the presence of SO2, through the evaluation of the kinetic parameters of the monomeric and dimeric flavanols sulfonation at the wine pH.The experimental design considered two different pH (3 and 4) and at five different temperature values (23, 30, 40, 50 and 60 oC), in order to study the reaction products obtained by SO2 addition to both monomeric (epicatechin and catechin) and dimeric flavanols (procyanidin B2 and procyanidin B3). The quantitative measurements were carried out by using a UHPLC-QTOF-MS instrument. The results demonstrated that [3]:a) the major sulfonation route that leads quickly and in good yields to monomeric 4β-sulfonated derivatives passes through the acid-catalysed depolymerisation of proanthocyanidins; b) monomeric flavanols lead with a significantly slower process to the same 4β-sulfonated products; c) kinetic data in our hands, in particular the temperature dependence of the observed rates, suggest the involvement of two completely different reaction mechanisms for the SO2 addition to dimeric and monomeric flavanol substrates; d) the direct sulfonation of epicatechin is slightly faster with respect to catechin.In conclusion, this new knowledge provides essential information in order to better understand tannin chemistry in food and predict or model the chemical/sensorial behaviour of wine or other food rich in proanthocyanidins.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas 1, Federico BONALDO 2, Fulvio MATTIVI 2, Graziano GUELLA 2

1 Fondazione Edmund Mach, San Michele all’Adige, Italy.
2 University of Trento, Trento, Italy.

Contact the author

Keywords

proanthocyanidins; tannins; sulfonation

Citation

Related articles…

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.

Sensorial characteristic of single variety red wines from four local variants of Tempranillo

It is well-known that there is a relationship between the “terroir” and the characteristics of grapes and quality of wines. However, adequate grape variety and other cultural factors should be also taken into account

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.