Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Abstract

AIM: During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others [1]. They interact by roducing unpredictable compounds an fermentation products that can affect the chemical composition of the wine and therfore alter its aromatic and sensory profile [1, 2].

METHODS: Chardonnay must inoculated with non-Saccharomyces yeasts including Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and later with Saccharomyces cerevisiae for sequential fermentation screened for metabolite composition using ultra high resolution mass spectrometry [3].

RESULTS: We show that tremendous differencces exist between yeasts in terms of metabolites production and we could clearly differentiate wines according to the yeast strain used [3]. It appears that single cultures could be easily discriminated from sequential cultures based on their metabolite profile. Biomarkers, which reflect important differences between wines from single or mixed culture fermentation, were extracted and annotated to characterized yeast species impact on wine final composition. New metabolites appeared in wines from sequential fermentation and some others metabolites are not detected anymore compared to single cultures. Our data are consistent with the existence of positive or negative interactions between yeast species.

CONCLUSIONS

The wine composition from sequential culture is not only the addition of metabolites from each species but is the result of complex interactions suggesting that interactions between yeasts are not neutral. The level of metabolites represents integrative information to better understand the microbial interactome in order to control the fermentation by multi-starters.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Chloé Roullier-Gall

Université de Bourgogne, IUVV, Jules Guyot, Dijon, France,- V. David; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – F. Bordet; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – P. Schmitt-Kopplin ; Technische Universität München, Freising, Germany & Helmholtz Zentrum München, Neuherberg, Germany – H. Alexandre; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France

Contact the author

Keywords

metabolomics, yeast, interaction, ft-icr-ms, chardonnay

Citation

Related articles…

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies