Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Abstract

AIM: During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others [1]. They interact by roducing unpredictable compounds an fermentation products that can affect the chemical composition of the wine and therfore alter its aromatic and sensory profile [1, 2].

METHODS: Chardonnay must inoculated with non-Saccharomyces yeasts including Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and later with Saccharomyces cerevisiae for sequential fermentation screened for metabolite composition using ultra high resolution mass spectrometry [3].

RESULTS: We show that tremendous differencces exist between yeasts in terms of metabolites production and we could clearly differentiate wines according to the yeast strain used [3]. It appears that single cultures could be easily discriminated from sequential cultures based on their metabolite profile. Biomarkers, which reflect important differences between wines from single or mixed culture fermentation, were extracted and annotated to characterized yeast species impact on wine final composition. New metabolites appeared in wines from sequential fermentation and some others metabolites are not detected anymore compared to single cultures. Our data are consistent with the existence of positive or negative interactions between yeast species.

CONCLUSIONS

The wine composition from sequential culture is not only the addition of metabolites from each species but is the result of complex interactions suggesting that interactions between yeasts are not neutral. The level of metabolites represents integrative information to better understand the microbial interactome in order to control the fermentation by multi-starters.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Chloé Roullier-Gall

Université de Bourgogne, IUVV, Jules Guyot, Dijon, France,- V. David; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – F. Bordet; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – P. Schmitt-Kopplin ; Technische Universität München, Freising, Germany & Helmholtz Zentrum München, Neuherberg, Germany – H. Alexandre; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France

Contact the author

Keywords

metabolomics, yeast, interaction, ft-icr-ms, chardonnay

Citation

Related articles…

The evolution of the concept of geographical denomination in South America

Vers la fin du XX siècle, la vitiviniculture argentine a subi une profonde transformation qualitative atteignant toute la filière. L’analyse de l’évolution de la superficie des vignobles, l’élaboration des vins, la consommation et les exportations, permet de mettre en évidence ces changements. Dans ce contexte, l’origine apparaît comme un outil de force, d’expansion et de succès sur les marchés.

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Evolution of chemical pattern related to Valpolicella aroma ‘terroir’ during bottle aging

Valpolicella is a famous Italian wine-producing region. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years require wines. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers