Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Abstract

AIM: During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others [1]. They interact by roducing unpredictable compounds an fermentation products that can affect the chemical composition of the wine and therfore alter its aromatic and sensory profile [1, 2].

METHODS: Chardonnay must inoculated with non-Saccharomyces yeasts including Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and later with Saccharomyces cerevisiae for sequential fermentation screened for metabolite composition using ultra high resolution mass spectrometry [3].

RESULTS: We show that tremendous differencces exist between yeasts in terms of metabolites production and we could clearly differentiate wines according to the yeast strain used [3]. It appears that single cultures could be easily discriminated from sequential cultures based on their metabolite profile. Biomarkers, which reflect important differences between wines from single or mixed culture fermentation, were extracted and annotated to characterized yeast species impact on wine final composition. New metabolites appeared in wines from sequential fermentation and some others metabolites are not detected anymore compared to single cultures. Our data are consistent with the existence of positive or negative interactions between yeast species.

CONCLUSIONS

The wine composition from sequential culture is not only the addition of metabolites from each species but is the result of complex interactions suggesting that interactions between yeasts are not neutral. The level of metabolites represents integrative information to better understand the microbial interactome in order to control the fermentation by multi-starters.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Chloé Roullier-Gall

Université de Bourgogne, IUVV, Jules Guyot, Dijon, France,- V. David; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – F. Bordet; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – P. Schmitt-Kopplin ; Technische Universität München, Freising, Germany & Helmholtz Zentrum München, Neuherberg, Germany – H. Alexandre; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France

Contact the author

Keywords

metabolomics, yeast, interaction, ft-icr-ms, chardonnay

Citation

Related articles…

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

Composition of grape grown on different Homogenous Terroir Units (HTU)

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Role of VvNCED1 in β-damascenone and abscisic acid biosynthesis: new insights into aroma development in grapes

β-Damascenone is a key norisoprenoid in grape (Vitis vinifera L.) that imparts floral and fruity aromas to both fruits and wines. It is derived from carotenoid metabolism, with neoxanthin as a substrate.