Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

Abstract

AIM: During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others [1]. They interact by roducing unpredictable compounds an fermentation products that can affect the chemical composition of the wine and therfore alter its aromatic and sensory profile [1, 2].

METHODS: Chardonnay must inoculated with non-Saccharomyces yeasts including Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and later with Saccharomyces cerevisiae for sequential fermentation screened for metabolite composition using ultra high resolution mass spectrometry [3].

RESULTS: We show that tremendous differencces exist between yeasts in terms of metabolites production and we could clearly differentiate wines according to the yeast strain used [3]. It appears that single cultures could be easily discriminated from sequential cultures based on their metabolite profile. Biomarkers, which reflect important differences between wines from single or mixed culture fermentation, were extracted and annotated to characterized yeast species impact on wine final composition. New metabolites appeared in wines from sequential fermentation and some others metabolites are not detected anymore compared to single cultures. Our data are consistent with the existence of positive or negative interactions between yeast species.

CONCLUSIONS

The wine composition from sequential culture is not only the addition of metabolites from each species but is the result of complex interactions suggesting that interactions between yeasts are not neutral. The level of metabolites represents integrative information to better understand the microbial interactome in order to control the fermentation by multi-starters.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Chloé Roullier-Gall

Université de Bourgogne, IUVV, Jules Guyot, Dijon, France,- V. David; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – F. Bordet; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France – P. Schmitt-Kopplin ; Technische Universität München, Freising, Germany & Helmholtz Zentrum München, Neuherberg, Germany – H. Alexandre; Université de Bourgogne, IUVV, Jules Guyot, Dijon, France

Contact the author

Keywords

metabolomics, yeast, interaction, ft-icr-ms, chardonnay

Citation

Related articles…

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.