Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Abstract

AIM: The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters. The present study aims to model the evolution of Sangiovese red wine during one-year aging at industrial scale in different tank materials (stainless steel, epoxy-coated concrete, uncoated concrete, raw earthenware amphora, new oak barrel and used oak barrel), in order to describe how the tank material could both allow the mass transfer of different amount of oxygen, or tannins and affect the oxidation and reduction reactions in wine.

METHODS: A Sangiovese red wine from 2018 harvest was monitored during one-year aging in six different tank materials in industrial scale (5 hL) and in triplicate. The wine chemical and physical parameters monitored were: dissolved oxygen (DO), redox potential (EH), Cielab coordinates, acetaldehyde, monomer anthocyanins and polymeric pigments content. The tank materials (M), storage time (t) and temperature (T) were considered as factors. Stainless steel (SS) was chosen as reference material. The kinetic models of the collecting data were performed as described in literature when available, otherwise a polynomial curve was adopted to obtain a good phenomenological fitting.

RESULTS: The experimental data were modeled and the kinetic models were able to describe the differences between the wine samples aged in the different tank materials. The same equation was used to describe the kinetics of oxygen consumption (DO) and six equations were instead necessary to model redox potential (EH) trend for the wines aged in the different tank materials (1,2,3). The DO and EH were also related to the chemical phenomena which were monitored and modeled for polymeric pigments, monomeric anthocyanins, acetaldehyde, and CIELab coordinates measurements during wine aging (4,5). Through the modeling of the different chemical parameters it was possible to evidence differences between the wines aged in different tank materials. In particular, the tanks in stainless steel and in epoxy-coated concrete were the least suitable to let the variation of the redox state of the wines and consequently to activate the polymerization reaction of wine phenolic fraction, exactly the opposite of the oak barrels; earthenware raw amphorae and uncoated concrete, on the other hand, had an intermediate behavior, but tended to be more similar to oak barrels.

CONCLUSIONS

The kinetics modeling of chemical and physical wine parameters was able to describe differences among wines aged in different tank materials. In particular, the one-year evolution of the phenolic composition, dissolved oxygen and redox potential of wines showed significant differences between aging tanks involved, differentiating the wines according to the material.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Francesco Maioli

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

dissolved oxygen, enological tank materials, earthenware raw amphora, redox potential, uncoated concrete, wine aging kinetics

Citation

Related articles…

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.