Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Abstract

AIM: The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters. The present study aims to model the evolution of Sangiovese red wine during one-year aging at industrial scale in different tank materials (stainless steel, epoxy-coated concrete, uncoated concrete, raw earthenware amphora, new oak barrel and used oak barrel), in order to describe how the tank material could both allow the mass transfer of different amount of oxygen, or tannins and affect the oxidation and reduction reactions in wine.

METHODS: A Sangiovese red wine from 2018 harvest was monitored during one-year aging in six different tank materials in industrial scale (5 hL) and in triplicate. The wine chemical and physical parameters monitored were: dissolved oxygen (DO), redox potential (EH), Cielab coordinates, acetaldehyde, monomer anthocyanins and polymeric pigments content. The tank materials (M), storage time (t) and temperature (T) were considered as factors. Stainless steel (SS) was chosen as reference material. The kinetic models of the collecting data were performed as described in literature when available, otherwise a polynomial curve was adopted to obtain a good phenomenological fitting.

RESULTS: The experimental data were modeled and the kinetic models were able to describe the differences between the wine samples aged in the different tank materials. The same equation was used to describe the kinetics of oxygen consumption (DO) and six equations were instead necessary to model redox potential (EH) trend for the wines aged in the different tank materials (1,2,3). The DO and EH were also related to the chemical phenomena which were monitored and modeled for polymeric pigments, monomeric anthocyanins, acetaldehyde, and CIELab coordinates measurements during wine aging (4,5). Through the modeling of the different chemical parameters it was possible to evidence differences between the wines aged in different tank materials. In particular, the tanks in stainless steel and in epoxy-coated concrete were the least suitable to let the variation of the redox state of the wines and consequently to activate the polymerization reaction of wine phenolic fraction, exactly the opposite of the oak barrels; earthenware raw amphorae and uncoated concrete, on the other hand, had an intermediate behavior, but tended to be more similar to oak barrels.

CONCLUSIONS

The kinetics modeling of chemical and physical wine parameters was able to describe differences among wines aged in different tank materials. In particular, the one-year evolution of the phenolic composition, dissolved oxygen and redox potential of wines showed significant differences between aging tanks involved, differentiating the wines according to the material.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Francesco Maioli

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

dissolved oxygen, enological tank materials, earthenware raw amphora, redox potential, uncoated concrete, wine aging kinetics

Citation

Related articles…

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).