Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

Abstract

AIM: The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters. The present study aims to model the evolution of Sangiovese red wine during one-year aging at industrial scale in different tank materials (stainless steel, epoxy-coated concrete, uncoated concrete, raw earthenware amphora, new oak barrel and used oak barrel), in order to describe how the tank material could both allow the mass transfer of different amount of oxygen, or tannins and affect the oxidation and reduction reactions in wine.

METHODS: A Sangiovese red wine from 2018 harvest was monitored during one-year aging in six different tank materials in industrial scale (5 hL) and in triplicate. The wine chemical and physical parameters monitored were: dissolved oxygen (DO), redox potential (EH), Cielab coordinates, acetaldehyde, monomer anthocyanins and polymeric pigments content. The tank materials (M), storage time (t) and temperature (T) were considered as factors. Stainless steel (SS) was chosen as reference material. The kinetic models of the collecting data were performed as described in literature when available, otherwise a polynomial curve was adopted to obtain a good phenomenological fitting.

RESULTS: The experimental data were modeled and the kinetic models were able to describe the differences between the wine samples aged in the different tank materials. The same equation was used to describe the kinetics of oxygen consumption (DO) and six equations were instead necessary to model redox potential (EH) trend for the wines aged in the different tank materials (1,2,3). The DO and EH were also related to the chemical phenomena which were monitored and modeled for polymeric pigments, monomeric anthocyanins, acetaldehyde, and CIELab coordinates measurements during wine aging (4,5). Through the modeling of the different chemical parameters it was possible to evidence differences between the wines aged in different tank materials. In particular, the tanks in stainless steel and in epoxy-coated concrete were the least suitable to let the variation of the redox state of the wines and consequently to activate the polymerization reaction of wine phenolic fraction, exactly the opposite of the oak barrels; earthenware raw amphorae and uncoated concrete, on the other hand, had an intermediate behavior, but tended to be more similar to oak barrels.

CONCLUSIONS

The kinetics modeling of chemical and physical wine parameters was able to describe differences among wines aged in different tank materials. In particular, the one-year evolution of the phenolic composition, dissolved oxygen and redox potential of wines showed significant differences between aging tanks involved, differentiating the wines according to the material.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Francesco Maioli

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

dissolved oxygen, enological tank materials, earthenware raw amphora, redox potential, uncoated concrete, wine aging kinetics

Citation

Related articles…

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

La brise de mer est un facteur climatique important pour le zonage viticole des régions viticoles côtières car l’accélération du vent qui lui est associée l’après midi ainsi que l’augmentation de l’humidité relative et la réduction de la température concomitantes sont significatives pour le fonctionnement de la vigne et, par conséquent, la qualité du raisin et du vin

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].