Macrowine 2021
IVES 9 IVES Conference Series 9 Evolution of flavonols during Merlot winemaking processes

Evolution of flavonols during Merlot winemaking processes

Abstract

Aim: The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions, such as Italy, Australia, and New Zealand (Gambuti et al., 2020; Lanati, Marchi, & Cascio, 2014; Somers & Ziemelis, 1985). Due to the limited information related to the quercetin aglycone behavior and its precursors during wine production in New Zealand, this study aims to monitor the evolution of flavonols and other polyphenols during the commercial fermentation of Merlot grapes, using different fermentation conditions, and vineyard treatments.

Methods: Various trials evaluating sun exposure, winemaking practices, and winemaking process management were undertaken using Merlot grapes, commercial yeast cultures, potassium metabisulphite (20 g/hL), and nutrient supplementation with DYNASTART®-LAFFORT at 20 g/hL. Samples were taken through the winemaking stages, and the polyphenols were quantified using a reversed-phase HPLC method (Garrido-Bañuelos et al., 2019; Peng et al. 2002).

Results: Grapes with elevated amounts of flavonols glycosides produced wines with higher levels of flavonol glycosides and quercetin. Wines made from grapes with greater sun exposure ended up with more flavonol glycosides (89 mg/L) and quercetin (16 mg/L) than the wines elaborated from less exposed grapes (47 mg/L and 9.4 mg/L, respectively). Certain winemaking practices showed differences in quercetin content, for example using small fermentation (250 kg) (12 mg/L), and large fermentation (five tonnes) (28 mg/L). The data also indicates that tannins and total anthocyanins were present at 786 mg/L and 156 mg/L, respectively, for small-scale ferments, and at 888 mg/L and 363 mg/L, respectively, for large-scale ferments. In evaluating the winemaking process management, the ferment pumped over (largest fermentation volume) exhibited flavonol glycosides and quercetin at the highest concentration (91 mg/L and 20 mg/L, respectively), compared to the remaining treatments. PMS, enzyme, and PMS plus enzyme, additions lowered the concentration of the flavonols glycosides at the end of the winemaking process (37 mg/L, 42 mg/L, and 43 mg/L, respectively). It was seem that the PMS plus enzyme (15.6 mg/L) increase quecetin in wine when compared to the control, no additions, (12.6 mg/L). The wines treated with enzyme, PMS, and PMS plus enzyme, also had lower concentrations of anthocyanins (215 mg/L, 233 mg/L, and 238 mg/L, respectively) than the control (291 mg/L). 

Conclusions

The study confirmed past research on the role of sun exposure in the formation of flavonols in Merlot grapes and wines. Fermentation size can improve the extraction of polyphenols into wine, and the enzyme additions can promote the hydrolysis of flavonol glycosides. In considering winemaking practices to lower flavonol content, the impact on remaining wine phenolics, of importance to wine colour and mouthfeel, also needs to be carefully evaluated.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristian Hernandez

School of Chemistry University of Auckland,Paul KILMARTIN, School of Chemistry, University of Auckland Leandro DIAS, School of Food Science, University of Auckland Gianni FLEGO, Villa Maria Estate winery Rebecca DEED, School of Biological Sciences, University of Auckland

Contact the author

Citation

Related articles…

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Response of grapevine cv. “Tinta Roriz” (vitis vinifera L.) to moderate irrigation in the Douro region, Portugal

The behaviour of cv. “Tinta Roriz” (Vitis vinifera L.), was studied when moderate drip irrigation was applied from veraison to harvest. Field studies were conducted during three growing seasons

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.