Macrowine 2021
IVES 9 IVES Conference Series 9 Evolution of flavonols during Merlot winemaking processes

Evolution of flavonols during Merlot winemaking processes

Abstract

Aim: The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions, such as Italy, Australia, and New Zealand (Gambuti et al., 2020; Lanati, Marchi, & Cascio, 2014; Somers & Ziemelis, 1985). Due to the limited information related to the quercetin aglycone behavior and its precursors during wine production in New Zealand, this study aims to monitor the evolution of flavonols and other polyphenols during the commercial fermentation of Merlot grapes, using different fermentation conditions, and vineyard treatments.

Methods: Various trials evaluating sun exposure, winemaking practices, and winemaking process management were undertaken using Merlot grapes, commercial yeast cultures, potassium metabisulphite (20 g/hL), and nutrient supplementation with DYNASTART®-LAFFORT at 20 g/hL. Samples were taken through the winemaking stages, and the polyphenols were quantified using a reversed-phase HPLC method (Garrido-Bañuelos et al., 2019; Peng et al. 2002).

Results: Grapes with elevated amounts of flavonols glycosides produced wines with higher levels of flavonol glycosides and quercetin. Wines made from grapes with greater sun exposure ended up with more flavonol glycosides (89 mg/L) and quercetin (16 mg/L) than the wines elaborated from less exposed grapes (47 mg/L and 9.4 mg/L, respectively). Certain winemaking practices showed differences in quercetin content, for example using small fermentation (250 kg) (12 mg/L), and large fermentation (five tonnes) (28 mg/L). The data also indicates that tannins and total anthocyanins were present at 786 mg/L and 156 mg/L, respectively, for small-scale ferments, and at 888 mg/L and 363 mg/L, respectively, for large-scale ferments. In evaluating the winemaking process management, the ferment pumped over (largest fermentation volume) exhibited flavonol glycosides and quercetin at the highest concentration (91 mg/L and 20 mg/L, respectively), compared to the remaining treatments. PMS, enzyme, and PMS plus enzyme, additions lowered the concentration of the flavonols glycosides at the end of the winemaking process (37 mg/L, 42 mg/L, and 43 mg/L, respectively). It was seem that the PMS plus enzyme (15.6 mg/L) increase quecetin in wine when compared to the control, no additions, (12.6 mg/L). The wines treated with enzyme, PMS, and PMS plus enzyme, also had lower concentrations of anthocyanins (215 mg/L, 233 mg/L, and 238 mg/L, respectively) than the control (291 mg/L). 

Conclusions

The study confirmed past research on the role of sun exposure in the formation of flavonols in Merlot grapes and wines. Fermentation size can improve the extraction of polyphenols into wine, and the enzyme additions can promote the hydrolysis of flavonol glycosides. In considering winemaking practices to lower flavonol content, the impact on remaining wine phenolics, of importance to wine colour and mouthfeel, also needs to be carefully evaluated.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristian Hernandez

School of Chemistry University of Auckland,Paul KILMARTIN, School of Chemistry, University of Auckland Leandro DIAS, School of Food Science, University of Auckland Gianni FLEGO, Villa Maria Estate winery Rebecca DEED, School of Biological Sciences, University of Auckland

Contact the author

Citation

Related articles…

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences