Macrowine 2021
IVES 9 IVES Conference Series 9 Evolution of flavonols during Merlot winemaking processes

Evolution of flavonols during Merlot winemaking processes

Abstract

Aim: The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions, such as Italy, Australia, and New Zealand (Gambuti et al., 2020; Lanati, Marchi, & Cascio, 2014; Somers & Ziemelis, 1985). Due to the limited information related to the quercetin aglycone behavior and its precursors during wine production in New Zealand, this study aims to monitor the evolution of flavonols and other polyphenols during the commercial fermentation of Merlot grapes, using different fermentation conditions, and vineyard treatments.

Methods: Various trials evaluating sun exposure, winemaking practices, and winemaking process management were undertaken using Merlot grapes, commercial yeast cultures, potassium metabisulphite (20 g/hL), and nutrient supplementation with DYNASTART®-LAFFORT at 20 g/hL. Samples were taken through the winemaking stages, and the polyphenols were quantified using a reversed-phase HPLC method (Garrido-Bañuelos et al., 2019; Peng et al. 2002).

Results: Grapes with elevated amounts of flavonols glycosides produced wines with higher levels of flavonol glycosides and quercetin. Wines made from grapes with greater sun exposure ended up with more flavonol glycosides (89 mg/L) and quercetin (16 mg/L) than the wines elaborated from less exposed grapes (47 mg/L and 9.4 mg/L, respectively). Certain winemaking practices showed differences in quercetin content, for example using small fermentation (250 kg) (12 mg/L), and large fermentation (five tonnes) (28 mg/L). The data also indicates that tannins and total anthocyanins were present at 786 mg/L and 156 mg/L, respectively, for small-scale ferments, and at 888 mg/L and 363 mg/L, respectively, for large-scale ferments. In evaluating the winemaking process management, the ferment pumped over (largest fermentation volume) exhibited flavonol glycosides and quercetin at the highest concentration (91 mg/L and 20 mg/L, respectively), compared to the remaining treatments. PMS, enzyme, and PMS plus enzyme, additions lowered the concentration of the flavonols glycosides at the end of the winemaking process (37 mg/L, 42 mg/L, and 43 mg/L, respectively). It was seem that the PMS plus enzyme (15.6 mg/L) increase quecetin in wine when compared to the control, no additions, (12.6 mg/L). The wines treated with enzyme, PMS, and PMS plus enzyme, also had lower concentrations of anthocyanins (215 mg/L, 233 mg/L, and 238 mg/L, respectively) than the control (291 mg/L). 

Conclusions

The study confirmed past research on the role of sun exposure in the formation of flavonols in Merlot grapes and wines. Fermentation size can improve the extraction of polyphenols into wine, and the enzyme additions can promote the hydrolysis of flavonol glycosides. In considering winemaking practices to lower flavonol content, the impact on remaining wine phenolics, of importance to wine colour and mouthfeel, also needs to be carefully evaluated.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristian Hernandez

School of Chemistry University of Auckland,Paul KILMARTIN, School of Chemistry, University of Auckland Leandro DIAS, School of Food Science, University of Auckland Gianni FLEGO, Villa Maria Estate winery Rebecca DEED, School of Biological Sciences, University of Auckland

Contact the author

Citation

Related articles…

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy).

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.