Macrowine 2021
IVES 9 IVES Conference Series 9 Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Abstract

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol (Kellerei Bozen, Bolzano, Italy), which included Merlot, Lagrein red, Lagrein rosé and St. Magdalener and were closed with different types of stoppers: a blend of natural cork microgranules and polymers without glue addition (Supercap Nature, Mombaroccio, Italy), a one-piece natural cork, agglomerated natural cork and a technical cork 1+1. Volatile compounds were extracted by head-space solid phase microextraction (HS-SPME) and then analysed by GC-MS, while the phenolic compounds were determined by HPLC-DAD-FLD. The type of stopper did not show significant differences on the chemical profiles of the wines. Instead, the interaction between the wines and the type of stoppers as well as the type of wines had a significant influence on the volatile and phenolic profiles. Regarding the volatile profile, significant differences were observed for ethyl butanoate and 2-hydroxyethylpropanoate which were present just in St. Magdalener and absent in Lagrein rosé wines, respectively. Also, 2-methylethyl butanoate and 3-methylethyl butanoate were not detected in both Lagrein red and rosé, whereas isopentyl acetate was found in Merlot wines at low concentration. On the other hand, 1-hexanol, ethyl hexanoate, ethyl octanoate and ethyl decanoate were found at high concentration in Lagrein rosé wine compared to the three red wines. Regarding the phenolic profile, results showed a low concentration of p-coumaric acid, protocatechuic acid, caftaric acid, (+)-catechin, (-)-epicatechin, S-glutathionyl caftaric acid (GRP) and syringic acid in Lagrein rosé wine with respect to the red wines. However, the concentration of gallic acid was higher in Merlot wine and differed significantly from the three others with the lowest value in the Lagrein rosé. The chemical profiles of the four wines were significantly influenced by the type of wine due to their grape variety and vinification processes. Conversely, the type of stopper did not show any significant differences in terms of volatile nor phenolic profile, due to the high technical quality of the closures under study.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Prudence Fleur Tchouakeu Betnga

Free University of Bozen-Bolzano, Italy ,Edoardo LONGO, Free University of Bozen-Bolzano, Italy Vakare MERKYTE, Free University of Bozen-Bolzano, Italy Amanda DUPAS DE MATOS, Feast Lab, Massey University, New Zealand Fabrizio ROSSETTI, Mérieux NutriSciences, Italy   Emanuele BOSELLI, Free University of Bozen-Bolzano, Italy

Contact the author

Keywords

cork stoppers; technical stoppers; volatile profile; phenolic profile; wines; bottle

Citation

Related articles…

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Comprehensive lipid profiling of grape musts: impact of static settling

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2].

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.