Macrowine 2021
IVES 9 IVES Conference Series 9 Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Abstract

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol (Kellerei Bozen, Bolzano, Italy), which included Merlot, Lagrein red, Lagrein rosé and St. Magdalener and were closed with different types of stoppers: a blend of natural cork microgranules and polymers without glue addition (Supercap Nature, Mombaroccio, Italy), a one-piece natural cork, agglomerated natural cork and a technical cork 1+1. Volatile compounds were extracted by head-space solid phase microextraction (HS-SPME) and then analysed by GC-MS, while the phenolic compounds were determined by HPLC-DAD-FLD. The type of stopper did not show significant differences on the chemical profiles of the wines. Instead, the interaction between the wines and the type of stoppers as well as the type of wines had a significant influence on the volatile and phenolic profiles. Regarding the volatile profile, significant differences were observed for ethyl butanoate and 2-hydroxyethylpropanoate which were present just in St. Magdalener and absent in Lagrein rosé wines, respectively. Also, 2-methylethyl butanoate and 3-methylethyl butanoate were not detected in both Lagrein red and rosé, whereas isopentyl acetate was found in Merlot wines at low concentration. On the other hand, 1-hexanol, ethyl hexanoate, ethyl octanoate and ethyl decanoate were found at high concentration in Lagrein rosé wine compared to the three red wines. Regarding the phenolic profile, results showed a low concentration of p-coumaric acid, protocatechuic acid, caftaric acid, (+)-catechin, (-)-epicatechin, S-glutathionyl caftaric acid (GRP) and syringic acid in Lagrein rosé wine with respect to the red wines. However, the concentration of gallic acid was higher in Merlot wine and differed significantly from the three others with the lowest value in the Lagrein rosé. The chemical profiles of the four wines were significantly influenced by the type of wine due to their grape variety and vinification processes. Conversely, the type of stopper did not show any significant differences in terms of volatile nor phenolic profile, due to the high technical quality of the closures under study.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Prudence Fleur Tchouakeu Betnga

Free University of Bozen-Bolzano, Italy ,Edoardo LONGO, Free University of Bozen-Bolzano, Italy Vakare MERKYTE, Free University of Bozen-Bolzano, Italy Amanda DUPAS DE MATOS, Feast Lab, Massey University, New Zealand Fabrizio ROSSETTI, Mérieux NutriSciences, Italy   Emanuele BOSELLI, Free University of Bozen-Bolzano, Italy

Contact the author

Keywords

cork stoppers; technical stoppers; volatile profile; phenolic profile; wines; bottle

Citation

Related articles…

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.