Macrowine 2021
IVES 9 IVES Conference Series 9 Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Abstract

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol (Kellerei Bozen, Bolzano, Italy), which included Merlot, Lagrein red, Lagrein rosé and St. Magdalener and were closed with different types of stoppers: a blend of natural cork microgranules and polymers without glue addition (Supercap Nature, Mombaroccio, Italy), a one-piece natural cork, agglomerated natural cork and a technical cork 1+1. Volatile compounds were extracted by head-space solid phase microextraction (HS-SPME) and then analysed by GC-MS, while the phenolic compounds were determined by HPLC-DAD-FLD. The type of stopper did not show significant differences on the chemical profiles of the wines. Instead, the interaction between the wines and the type of stoppers as well as the type of wines had a significant influence on the volatile and phenolic profiles. Regarding the volatile profile, significant differences were observed for ethyl butanoate and 2-hydroxyethylpropanoate which were present just in St. Magdalener and absent in Lagrein rosé wines, respectively. Also, 2-methylethyl butanoate and 3-methylethyl butanoate were not detected in both Lagrein red and rosé, whereas isopentyl acetate was found in Merlot wines at low concentration. On the other hand, 1-hexanol, ethyl hexanoate, ethyl octanoate and ethyl decanoate were found at high concentration in Lagrein rosé wine compared to the three red wines. Regarding the phenolic profile, results showed a low concentration of p-coumaric acid, protocatechuic acid, caftaric acid, (+)-catechin, (-)-epicatechin, S-glutathionyl caftaric acid (GRP) and syringic acid in Lagrein rosé wine with respect to the red wines. However, the concentration of gallic acid was higher in Merlot wine and differed significantly from the three others with the lowest value in the Lagrein rosé. The chemical profiles of the four wines were significantly influenced by the type of wine due to their grape variety and vinification processes. Conversely, the type of stopper did not show any significant differences in terms of volatile nor phenolic profile, due to the high technical quality of the closures under study.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Prudence Fleur Tchouakeu Betnga

Free University of Bozen-Bolzano, Italy ,Edoardo LONGO, Free University of Bozen-Bolzano, Italy Vakare MERKYTE, Free University of Bozen-Bolzano, Italy Amanda DUPAS DE MATOS, Feast Lab, Massey University, New Zealand Fabrizio ROSSETTI, Mérieux NutriSciences, Italy   Emanuele BOSELLI, Free University of Bozen-Bolzano, Italy

Contact the author

Keywords

cork stoppers; technical stoppers; volatile profile; phenolic profile; wines; bottle

Citation

Related articles…

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

The Australian geographical indication process

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses.

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,