Macrowine 2021
IVES 9 IVES Conference Series 9 Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

Abstract

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol (Kellerei Bozen, Bolzano, Italy), which included Merlot, Lagrein red, Lagrein rosé and St. Magdalener and were closed with different types of stoppers: a blend of natural cork microgranules and polymers without glue addition (Supercap Nature, Mombaroccio, Italy), a one-piece natural cork, agglomerated natural cork and a technical cork 1+1. Volatile compounds were extracted by head-space solid phase microextraction (HS-SPME) and then analysed by GC-MS, while the phenolic compounds were determined by HPLC-DAD-FLD. The type of stopper did not show significant differences on the chemical profiles of the wines. Instead, the interaction between the wines and the type of stoppers as well as the type of wines had a significant influence on the volatile and phenolic profiles. Regarding the volatile profile, significant differences were observed for ethyl butanoate and 2-hydroxyethylpropanoate which were present just in St. Magdalener and absent in Lagrein rosé wines, respectively. Also, 2-methylethyl butanoate and 3-methylethyl butanoate were not detected in both Lagrein red and rosé, whereas isopentyl acetate was found in Merlot wines at low concentration. On the other hand, 1-hexanol, ethyl hexanoate, ethyl octanoate and ethyl decanoate were found at high concentration in Lagrein rosé wine compared to the three red wines. Regarding the phenolic profile, results showed a low concentration of p-coumaric acid, protocatechuic acid, caftaric acid, (+)-catechin, (-)-epicatechin, S-glutathionyl caftaric acid (GRP) and syringic acid in Lagrein rosé wine with respect to the red wines. However, the concentration of gallic acid was higher in Merlot wine and differed significantly from the three others with the lowest value in the Lagrein rosé. The chemical profiles of the four wines were significantly influenced by the type of wine due to their grape variety and vinification processes. Conversely, the type of stopper did not show any significant differences in terms of volatile nor phenolic profile, due to the high technical quality of the closures under study.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Prudence Fleur Tchouakeu Betnga

Free University of Bozen-Bolzano, Italy ,Edoardo LONGO, Free University of Bozen-Bolzano, Italy Vakare MERKYTE, Free University of Bozen-Bolzano, Italy Amanda DUPAS DE MATOS, Feast Lab, Massey University, New Zealand Fabrizio ROSSETTI, Mérieux NutriSciences, Italy   Emanuele BOSELLI, Free University of Bozen-Bolzano, Italy

Contact the author

Keywords

cork stoppers; technical stoppers; volatile profile; phenolic profile; wines; bottle

Citation

Related articles…

Direct SPME GC-MS determination of volatile congeners in wines without sample pre-treatment

In this work “ethanol as an internal standard” method was used for the SPME GC-MS quantification of volatile congeners in wines. Our aim was to develop a fast and simple method of wine analysis without additional procedures, reagents etc. A row of standard solutions containing some frequently found congeners in wine was prepared gravimetrically. Suggested method was compared with traditional internal standard method.

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1.