Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

Abstract

AIM: The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics, and complies with any label declaration of nutritional data.1 Wine exhibits a “random” shelf life, as the chemical changes are as dependent on the initial condition of the product, including packaging, as on the storage and freight conditions of the product. However, storage and transport conditions of wine may lead to a reduction in wine quality because of unintended physical and chemical changes. These modifications are generally referred to as oxidative spoilage, and they result in browning and loss of fresh, fruity, and varietal aroma characters.2 Certain protective agents such as SO2 are also typically lost with the onset of oxidative spoilage. Recent studies have shown that the outcomes of oxidation in terms of degree of oxidative spoilage are strongly wine specific,3 so that certain wines appear to be more resistant against oxidative spoilage. In this study, chemical and electrochemical changes under the effects of shipping conditions were measured in thirteen Soave wines, to evaluate the potential of Cyclic Voltammetry in conjunction with other parameters to provide relevant information on the oxidative behaviour of individual white wines.

METHODS: The wines underwent an ageing protocol simulating a freight of 46 days, during which the wine was subjected to specific temperature cycles. In the storage of wines at the departure port, the temperature fluctuated between 16 and 25 °C, reflecting the diurnal cycle; while, during the journey of 28 days, the temperature reached 30 °C. Finally, storage at the arrival port produced an oscillation between 25 and 35 °C. Electrochemical methods, in particular the cyclic voltammetry using either glassy carbon or carbon paste electrodes, have been applied to the analysis of wine phenolics.4 Voltammograms of each wine were collected and their features were analysed in conjunction with concentration of free and total SO2, chromatic and spectrophotometric parameters.

RESULTS: The ageing protocol adopted led each wine to a different free and total SO2 consumption, also reflected in an electrochemical diversity and a general increase of chromatic parameters. Cyclic voltammograms have shown a diversity of electrochemical properties, concentration and type of oxidizable compounds present.

CONCLUSIONS

The objective of this study was to explore the electrochemical and chemical repercussions of adverse temperature conditions on Soave wines to better understand the changes due to freight and storage. Significant and seemingly correlated information derived from the electrochemical profile and SO2 consumption of each wine. This study could also constitute the beginning of research aimed at obtaining predictive parameters of the wine shelf life.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

wine, shelf life, freight, voltammetry

Citation

Related articles…

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.