Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

Abstract

AIM: The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics, and complies with any label declaration of nutritional data.1 Wine exhibits a “random” shelf life, as the chemical changes are as dependent on the initial condition of the product, including packaging, as on the storage and freight conditions of the product. However, storage and transport conditions of wine may lead to a reduction in wine quality because of unintended physical and chemical changes. These modifications are generally referred to as oxidative spoilage, and they result in browning and loss of fresh, fruity, and varietal aroma characters.2 Certain protective agents such as SO2 are also typically lost with the onset of oxidative spoilage. Recent studies have shown that the outcomes of oxidation in terms of degree of oxidative spoilage are strongly wine specific,3 so that certain wines appear to be more resistant against oxidative spoilage. In this study, chemical and electrochemical changes under the effects of shipping conditions were measured in thirteen Soave wines, to evaluate the potential of Cyclic Voltammetry in conjunction with other parameters to provide relevant information on the oxidative behaviour of individual white wines.

METHODS: The wines underwent an ageing protocol simulating a freight of 46 days, during which the wine was subjected to specific temperature cycles. In the storage of wines at the departure port, the temperature fluctuated between 16 and 25 °C, reflecting the diurnal cycle; while, during the journey of 28 days, the temperature reached 30 °C. Finally, storage at the arrival port produced an oscillation between 25 and 35 °C. Electrochemical methods, in particular the cyclic voltammetry using either glassy carbon or carbon paste electrodes, have been applied to the analysis of wine phenolics.4 Voltammograms of each wine were collected and their features were analysed in conjunction with concentration of free and total SO2, chromatic and spectrophotometric parameters.

RESULTS: The ageing protocol adopted led each wine to a different free and total SO2 consumption, also reflected in an electrochemical diversity and a general increase of chromatic parameters. Cyclic voltammograms have shown a diversity of electrochemical properties, concentration and type of oxidizable compounds present.

CONCLUSIONS

The objective of this study was to explore the electrochemical and chemical repercussions of adverse temperature conditions on Soave wines to better understand the changes due to freight and storage. Significant and seemingly correlated information derived from the electrochemical profile and SO2 consumption of each wine. This study could also constitute the beginning of research aimed at obtaining predictive parameters of the wine shelf life.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

wine, shelf life, freight, voltammetry

Citation

Related articles…

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Sustainable vineyard management at the regional scale: insights from a Swiss winegrowing region

Swiss wine producers are faced to high production costs and low-priced wine imports.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.