Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

Abstract

AIM: From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines.

METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

RESULTS: Esters decreased significantly for all the YDs added along the first 9 months unless for the cases of YE and OW. However, from 9 to 18 months of aging, the total amount of esters increased in all the treatments except YE and OW, specially remarkable was the increase for wines treated with TD. Terpenes diminished significantly from 9 to 18 months of aging exceptuating again the treatment TD, in where the presence of these compounds increased. Hence, for the production of sparkling wines with a short aging period it would be recommended the addition of YE or OW, and for long aging, TD. No significant differences of the total amount of volatile compounds were found among the different dosages of derivatives tested. After 9 months of aging, YA and OW accounted the highest foamability, specially for the highest dose. In general, the addition of YDs decreased significantly the time to reach the maximum high (TM) of the foam (HM) in wines aged 9 months. Moreover, the addition of YA and OW gave rise to the sparkling wines with the highest foam stability (HS). Sensory trials showed that the differences between aging periods (9 and 18 months) were higher than differences among YDs treatments.

CONCLUSIONS:

Several secondary metabolites and foam characteristecs were positively influenced by YDs addition to the wines. This, join to the expectations of aging time for that wine, will be essential to decide which of the YDs is better to use during the production of sparkling wines by traditional method.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristina Ubeda

Nutrition and Bromatology Department, Faculty of Pharmacy, University of Seville, Spain. ,Rubén DEL BARRIO-GALÁN, Agroindustry and Enology Department, Faculty of Agronomic Sciences, University of Chile, Santiago, Chile. Mª Ignacia LAMBERT-ROYO, Agroindustry and Enology Department, Faculty of Agronomic Sciences, University of Chile, Santiago, Chile. Nathalie SIECZKOWSKI, Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France. Joan Miquel CANALS, Biochemistry and Biotechnology Department, Faculty of Enology, University Rovira I Virgili, Tarragona, Spain.  Álvaro PEÑA-NEIRA, Agroindustry and Enology Department, Faculty of Agronomic Sciences, University of Chile, Santiago, Chile. Mariona GIL i CORTIELLA, Applied Chemical Sciences Institute, Autonomous University of Chile, Santiago, Chile.

Contact the author

Keywords

sparkling wine, yeast derived products, aging on lees, foam characteristics, sensory properties, secondary metabolites

Citation

Related articles…

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Vinhos de talha: to pitch or not to pitch

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines.

Oxygen transfer through cork stoppers

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging,

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.