Influence of grape withering on corvina and corvinone aroma composition

Abstract

AIM:Valpolicella is a wine region located in Italy north-east, famous for the production of dry and sweet red wines from withered grapes, including Amarone and Recioto. The aim of this study is to understand the influence of the withering process on Corvina and Corvinone wines aroma profiles.

METHODS:Wines were produced with a standard red wine winemaking protocol with Corvina and Corvinone grapes from different Valpolicella vineyards and vintages. In consideration of the local traditional practice of post-harvest withering of the grapes, wines from each vineyard were obtained from either fresh and withered grapes. Wines were analysed by Solid Phase Extraction and Solid Phase Micro Extraction gas chromatography coupled to mass spectrometry.

RESULTS:Within each variety, multivariate analysis showed a greater effect of the withering process compared to grape geographical origin. Withered grapes wines exhibited higher content of norisoprenoids, in particular TPB, vitispirane e β-damascenone, with increases up to 2,8-folds compared to wines produced with fresh grapes. Withering also induced an increase in benzenoids such as vanillin, methyl vanillate, ethyl vanillate and benzyl alcohol. Terpene content of withered wines was lower compared to fresh grape wines except for β-citronellol which generally increased. Wine esters content, except ethyl butanoate, generally decreased with grape withering.

CONCLUSIONS:

The withering process deeply changes wines aroma profile. Modifications induced by withering cannot be simply ascribed to the concentration effect of evaporation, but involve more complex phenomena affecting grape and yeast metabolism.

ACKNOWLEDGMENTS:

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini 

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

amarone, valpolicella, withered grapes wines, red wines aroma

Citation

Related articles…

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.