Influence of withering on valpolicella docgs grapes volatile composition

Abstract

AIM: The blend of grapes used in the production of the four Valpolicella PDOs red wines, namely Valpolicella, Valpolicella Classico Superiore, Recioto della Valpolicella and Amarone della Valpolicella is quite unique, and includes two main varieties Corvina and Corvinone, and other minor varieties. To a very large extent all these grapes are only grown in the province of Verona. One of the main characteristics of Valpolicella is the use of grapes that are submitted to post-harvest withering. The aim of this study was therefore to evaluate the evolution of the free and glycosidically-bound volatile compounds in Corvina and Corvinone grapes under real production conditions.

METHODS: Corvina and Corvinone grapes from five different vineyards, at harvest and after 90 days of withering, were obtained from local winery during three consecutive vintages. Grape extracts were prepared with 800 grams of hand-crushed destemmed berries to which 141 mL of ethanol, 400 µg of dimethyl dicarbonate and 80 mg of potassium metabisulphite were added. Bottles were closed with screw caps and kept at 22 ± 1 °C for 14 days, during which they were hand stirred two times per day without opening the caps. Free volatile compounds and glycosidic precursors have been analysed by means of SPE- and SPME-GC-MS methods.

RESULTS: Most free and bound volatile increased in concentration with withering, in agreement with the fact that this process involve a significant degree of water loss (typically around 30%). However, for some compounds a decrease was observed with withering, including free cis-3-hexen-1-ol, 3-hydroxy-β-damascone and methyl salicylate. In the case of terpenes, more complex withering varieties interactions were observed. While in Corvinone all free terpenes increased with withering, in Corvina different patterns were observed, since β-citronellol and other terpenes increased while geraniol, linalool and α-terpineol showed similar content after treatment. Likewise, bound terpenes decreased in Corvina with withering, while in Corvinone they increased in two vintages out of three.

CONCLUSIONS:

Withering is a complex process in which, in addition to the simple water loss, a number of complex biochemical transformations occur inside the grape berry. These can affect volatile compounds of potential sensory relevance for Valpolicella wines in particular terpenes and norisoprenoids. Some variety-related differences in the evolution of certain aroma compounds during withering have been observed, with important consequences for the practical management of post-harvest withering.

ACKNOWLEDGMENTS:

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

withered grapes, grape volatile compounds, valpolicella, amarone, recioto

Citation

Related articles…

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Développer des outils simples pour accompagner les viticulteurs dans leurs changements de pratiques et répondre aux enjeux du siècle à venir

French viticulture is currently facing major challenges as it enters the new century: climate change, the need to reduce inputs, societal issues, changing consumer habits, labor shortages …. Vinopôle bordeaux-aquitaine, to which the teams from the chambre d’agriculture de la gironde belong, supports winegrowers of the gironde and bergerac-duras regions in the gradual evolution of their practices.

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.