Influence of withering on valpolicella docgs grapes volatile composition

Abstract

AIM: The blend of grapes used in the production of the four Valpolicella PDOs red wines, namely Valpolicella, Valpolicella Classico Superiore, Recioto della Valpolicella and Amarone della Valpolicella is quite unique, and includes two main varieties Corvina and Corvinone, and other minor varieties. To a very large extent all these grapes are only grown in the province of Verona. One of the main characteristics of Valpolicella is the use of grapes that are submitted to post-harvest withering. The aim of this study was therefore to evaluate the evolution of the free and glycosidically-bound volatile compounds in Corvina and Corvinone grapes under real production conditions.

METHODS: Corvina and Corvinone grapes from five different vineyards, at harvest and after 90 days of withering, were obtained from local winery during three consecutive vintages. Grape extracts were prepared with 800 grams of hand-crushed destemmed berries to which 141 mL of ethanol, 400 µg of dimethyl dicarbonate and 80 mg of potassium metabisulphite were added. Bottles were closed with screw caps and kept at 22 ± 1 °C for 14 days, during which they were hand stirred two times per day without opening the caps. Free volatile compounds and glycosidic precursors have been analysed by means of SPE- and SPME-GC-MS methods.

RESULTS: Most free and bound volatile increased in concentration with withering, in agreement with the fact that this process involve a significant degree of water loss (typically around 30%). However, for some compounds a decrease was observed with withering, including free cis-3-hexen-1-ol, 3-hydroxy-β-damascone and methyl salicylate. In the case of terpenes, more complex withering varieties interactions were observed. While in Corvinone all free terpenes increased with withering, in Corvina different patterns were observed, since β-citronellol and other terpenes increased while geraniol, linalool and α-terpineol showed similar content after treatment. Likewise, bound terpenes decreased in Corvina with withering, while in Corvinone they increased in two vintages out of three.

CONCLUSIONS:

Withering is a complex process in which, in addition to the simple water loss, a number of complex biochemical transformations occur inside the grape berry. These can affect volatile compounds of potential sensory relevance for Valpolicella wines in particular terpenes and norisoprenoids. Some variety-related differences in the evolution of certain aroma compounds during withering have been observed, with important consequences for the practical management of post-harvest withering.

ACKNOWLEDGMENTS:

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

withered grapes, grape volatile compounds, valpolicella, amarone, recioto

Citation

Related articles…

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Zonificación vitícola y aplicación a la D.O. Montilla-Moriles, usando como referencia la variedad ‘Pedro Ximenes’

Se señalaron 28 parcelas, en la zona de D.O. Montilla-Moriles, repartidas por toda la superficie de viñedo, de ellas 12 se localizan en las Zonas de calidad Superior, en los términos municipales de Montilla

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.