Volatile compounds of base wines for the production of Lessini Durello sparkling wine

Abstract

AIM: Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine.

METHODS: 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds.

RESULTS: Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters. The norisoprenoid content was higher than in other dry still wines of the sare region (Garganega, Lugana, Pujnot Grigio), which appeared of particular interest considering the early harvest of grapes for sparkling wine production. Odor activity value (OAV) was used to assess the compounds that most contributed to wine aroma. The compounds with an OAV >1 were the ethyl octanoate, ß-damascenone, ethyl hexanoate, isoamyl acetate, octanoic acid, ethyl butanoate, hexanoic acid, TPB, 3-methylbutanoic acid, ethyl 3-methylbutanoate, isoamyl alcohol, ethyl decanoate and finally TDN. The evaluation of the wine aroma profile by means of aromatic series indicated that Durello base wines were characterized by the “fruity” series. Analysis of a subset of Durello wines fromthree different regions within the Lessini Mountains, namely Brenton, Chiampo and Duello , showed that the three areas could be differentiated based on content of methyl salicylate, and the glycosidic precursors of cis-2-hexen-1-ol and 3-oxo-α-ionol.

CONCLUSIONS:

Base wines for the production of Durello sparkling wine were characterized by high concentrations of norisoprenoids and esters which can contribute to the fruity and tobacco aroma of wine. These results can be particularly useful for winemakers in order to create distinctive wine styles.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi 

Department of Biotechnology, University of Verona, Italy ,Giulia REANI, Department of Biotechnology, University of Verona, Italy Giovanni LUZZINI, Department of Biotechnology, University of Verona, Italy Jessica SAMANIEGO-SOLIS, Department of Biotechnology, University of Verona, Italy Maurizio UGLIANO, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

durello; sparkling wine; esters, norisoprenoids, volatile compounds

Citation

Related articles…

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.