Volatile compounds of base wines for the production of Lessini Durello sparkling wine

Abstract

AIM: Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine.

METHODS: 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds.

RESULTS: Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters. The norisoprenoid content was higher than in other dry still wines of the sare region (Garganega, Lugana, Pujnot Grigio), which appeared of particular interest considering the early harvest of grapes for sparkling wine production. Odor activity value (OAV) was used to assess the compounds that most contributed to wine aroma. The compounds with an OAV >1 were the ethyl octanoate, ß-damascenone, ethyl hexanoate, isoamyl acetate, octanoic acid, ethyl butanoate, hexanoic acid, TPB, 3-methylbutanoic acid, ethyl 3-methylbutanoate, isoamyl alcohol, ethyl decanoate and finally TDN. The evaluation of the wine aroma profile by means of aromatic series indicated that Durello base wines were characterized by the “fruity” series. Analysis of a subset of Durello wines fromthree different regions within the Lessini Mountains, namely Brenton, Chiampo and Duello , showed that the three areas could be differentiated based on content of methyl salicylate, and the glycosidic precursors of cis-2-hexen-1-ol and 3-oxo-α-ionol.

CONCLUSIONS:

Base wines for the production of Durello sparkling wine were characterized by high concentrations of norisoprenoids and esters which can contribute to the fruity and tobacco aroma of wine. These results can be particularly useful for winemakers in order to create distinctive wine styles.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi 

Department of Biotechnology, University of Verona, Italy ,Giulia REANI, Department of Biotechnology, University of Verona, Italy Giovanni LUZZINI, Department of Biotechnology, University of Verona, Italy Jessica SAMANIEGO-SOLIS, Department of Biotechnology, University of Verona, Italy Maurizio UGLIANO, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

durello; sparkling wine; esters, norisoprenoids, volatile compounds

Citation

Related articles…

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Hormone metabolism regulates fruit maturation in a slow ripening grape genotype

Context and purpose of the study. Rising temperatures and prolonged heat accelerate berry sugar accumulation in advance of the accumulation of compounds responsible for aroma, colour and mouthfeel.

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

Zonage viticole des surfaces potentielles dans la vallée Centrale de Tarija (Bolivie)

La présente étude de zonage viticole a été faite dans la région de la vallée Central de Tarija(VCT), dans la ville de Tarija, au Sud de la Bolivie; une région avec plus de 400 années de tradition qui présente une vitiviniculture de haute qualité. La Vallée possède une surface total de 332 milles ha.; existant des vignobles entre 1660 y 2300 m.s.n.m. et dans ce rang d’altitude il existe 91 mille ha.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.