Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Volatile compounds of base wines for the production of Lessini Durello sparkling wine

Volatile compounds of base wines for the production of Lessini Durello sparkling wine

Abstract

AIM: Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine.

METHODS: 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds.

RESULTS: Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters. The norisoprenoid content was higher than in other dry still wines of the sare region (Garganega, Lugana, Pujnot Grigio), which appeared of particular interest considering the early harvest of grapes for sparkling wine production. Odor activity value (OAV) was used to assess the compounds that most contributed to wine aroma. The compounds with an OAV >1 were the ethyl octanoate, ß-damascenone, ethyl hexanoate, isoamyl acetate, octanoic acid, ethyl butanoate, hexanoic acid, TPB, 3-methylbutanoic acid, ethyl 3-methylbutanoate, isoamyl alcohol, ethyl decanoate and finally TDN. The evaluation of the wine aroma profile by means of aromatic series indicated that Durello base wines were characterized by the “fruity” series. Analysis of a subset of Durello wines fromthree different regions within the Lessini Mountains, namely Brenton, Chiampo and Duello , showed that the three areas could be differentiated based on content of methyl salicylate, and the glycosidic precursors of cis-2-hexen-1-ol and 3-oxo-α-ionol.

CONCLUSIONS:

Base wines for the production of Durello sparkling wine were characterized by high concentrations of norisoprenoids and esters which can contribute to the fruity and tobacco aroma of wine. These results can be particularly useful for winemakers in order to create distinctive wine styles.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi 

Department of Biotechnology, University of Verona, Italy ,Giulia REANI, Department of Biotechnology, University of Verona, Italy Giovanni LUZZINI, Department of Biotechnology, University of Verona, Italy Jessica SAMANIEGO-SOLIS, Department of Biotechnology, University of Verona, Italy Maurizio UGLIANO, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

durello; sparkling wine; esters, norisoprenoids, volatile compounds

Citation

Related articles…

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.