Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Abstract

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology. For polyphenols is HPLC-UV/vis. Samples of musts, monovarietal wines, stabilized blended wines and cavas with 3 and 7 months of second fermentation are being studied. Data will be treated using boxplots to see the predominant compounds and chemometric tools such as Principal Component Analysis (PCA) to establish correlations and Partial Least Squares (PLS) for predictions between samples. By the moment, results in Pinot Noir grape variety shown that quality A present high levels of tartaric, malic, citric and succinic acids in musts and wines and there is observed a decrease in citric acid and an increase of succinic acid during the second fermentation. The results of Xarel·lo grape variety shown lower levels of tartaric acid than in Pinot Noir grape variety. Nevertheless, quality A present high amounts of this acid. Qualities A and B present similar levels of malic acid but in quality A slightly higher. For citric acid no noticeable changes are observed from must to cava of 7 month. Quality A present higher levels of succinic acid. Lower values of malic acid and higher values of lactic acid are observed in qualities C and D, due to, the malolactic fermentation in both varieties and there is observed a decrease of tartaric acid from wines to cavas, due to, the tartaric stabilization. In conclusion, malic and tartaric acids are the most important compounds in the quality of cavas. This involves that the futures cavas will be able to age more time.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anaïs Izquierdo Llopart 

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.,Javier, SAURINA, Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.

Contact the author

Keywords

cava, wine quality, grape varieties, pinot noir, xarel·lo, vineyards, second fermentation, malolactic fermentation, organic acids, polyphenols, hplc, chemometric tools

Citation

Related articles…

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.

Variability in the content of coarse elements in a viticultural plot in the Graves appellation: relationship with geophysical data

Il a été souvent démontré (Seguin, 1970), que les meilleurs terroirs sont ceux qui présentent pendant la période de maturation du raisin, une régulation et une limitation de l’alimentation hydrique de la vigne. Si on s’intéresse aux facteurs influençant ce régime hydrique, on constate le rôle prépondérant du taux d’éléments grossiers non poreux qui limitent la réserve utile du sol en diminuant le taux de terre fine. De plus, ces éléments grossiers jouent également un rôle au niveau du pédo-climat thermique car leur conductivité thermique et leur chaleur spécifique sont plus élevées que celles de la terre fine. Ainsi le sol se réchauffera et se refroidira plus rapidement (Saini et McLean, 1967), (Gras, 1994).

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Panorama des actions d’amélioration variétale face aux challenges d’aujourd’hui et de demain, le rôle de l’IFV

In April 2024, the French official catalog includes 449 grape varieties and rootstocks. In 10 years it has been enriched with 70 varieties. It is an indisputable marker of the interest of professionals in genetic resources of all origins and the expectations they have to prepare the viticulture of the future. The scientific community has now put all irons in the fire and is not neglecting any avenue of adaptation. The regular decline in the use of phytosanitary products and the already marked effects of climate change are the targets of varietal improvement.