Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Abstract

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology. For polyphenols is HPLC-UV/vis. Samples of musts, monovarietal wines, stabilized blended wines and cavas with 3 and 7 months of second fermentation are being studied. Data will be treated using boxplots to see the predominant compounds and chemometric tools such as Principal Component Analysis (PCA) to establish correlations and Partial Least Squares (PLS) for predictions between samples. By the moment, results in Pinot Noir grape variety shown that quality A present high levels of tartaric, malic, citric and succinic acids in musts and wines and there is observed a decrease in citric acid and an increase of succinic acid during the second fermentation. The results of Xarel·lo grape variety shown lower levels of tartaric acid than in Pinot Noir grape variety. Nevertheless, quality A present high amounts of this acid. Qualities A and B present similar levels of malic acid but in quality A slightly higher. For citric acid no noticeable changes are observed from must to cava of 7 month. Quality A present higher levels of succinic acid. Lower values of malic acid and higher values of lactic acid are observed in qualities C and D, due to, the malolactic fermentation in both varieties and there is observed a decrease of tartaric acid from wines to cavas, due to, the tartaric stabilization. In conclusion, malic and tartaric acids are the most important compounds in the quality of cavas. This involves that the futures cavas will be able to age more time.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anaïs Izquierdo Llopart 

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.,Javier, SAURINA, Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.

Contact the author

Keywords

cava, wine quality, grape varieties, pinot noir, xarel·lo, vineyards, second fermentation, malolactic fermentation, organic acids, polyphenols, hplc, chemometric tools

Citation

Related articles…

Les terroirs : variae causarum figurae

The jurist feels like an intruder when talking about terroirs. He looks at the press and tries to understand. We can read there about the cooking festival of May 30, 1996 which “..highlights products whose quality depends on a region”, that Camembert du pays d’Auge is the only one to be protected, I was thinking of camembert from Normandy, that 80% of Greek feta is made in the Netherlands, I thought it was in Denmark, and that the European Community protects geographical indications of IGP origin, probably a new category replacing the indications protected areas (1). I also learned that distributors are asking for more local products because “they come to confuse the cards in the part engaged with the big brands”. Carrefour has its “Terroirs and drawers”, Prisunic its “Vent d’Ouest”, Intermarché “Les bouquets du terroir”, Monoprix “Les terroirs de France” (2), Promodés and its brand “Reflets de France” for the “Continent” hypermarkets (3). At the same time it is asserted that “The term is a mere common noun. Unprotectable and therefore unprotected” (4).

Exploring the use of high-power ultrasound in white and rosé winemaking

Since the approval in 2019 of the use of high-power ultrasound (US) in winemaking to support extractive processes from grape to must, the study of this technology in red winemaking has increased significantly, with laboratory and semi-industrial scale studies.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Economic comparison of viticultural cultivation systems: evaluating costs across integrated, organic, and biodynamic practices

The cost-effectiveness of a winery requires constant cost control in order to ensure competitiveness on the wine market.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.