Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Abstract

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology. For polyphenols is HPLC-UV/vis. Samples of musts, monovarietal wines, stabilized blended wines and cavas with 3 and 7 months of second fermentation are being studied. Data will be treated using boxplots to see the predominant compounds and chemometric tools such as Principal Component Analysis (PCA) to establish correlations and Partial Least Squares (PLS) for predictions between samples. By the moment, results in Pinot Noir grape variety shown that quality A present high levels of tartaric, malic, citric and succinic acids in musts and wines and there is observed a decrease in citric acid and an increase of succinic acid during the second fermentation. The results of Xarel·lo grape variety shown lower levels of tartaric acid than in Pinot Noir grape variety. Nevertheless, quality A present high amounts of this acid. Qualities A and B present similar levels of malic acid but in quality A slightly higher. For citric acid no noticeable changes are observed from must to cava of 7 month. Quality A present higher levels of succinic acid. Lower values of malic acid and higher values of lactic acid are observed in qualities C and D, due to, the malolactic fermentation in both varieties and there is observed a decrease of tartaric acid from wines to cavas, due to, the tartaric stabilization. In conclusion, malic and tartaric acids are the most important compounds in the quality of cavas. This involves that the futures cavas will be able to age more time.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anaïs Izquierdo Llopart 

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.,Javier, SAURINA, Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.

Contact the author

Keywords

cava, wine quality, grape varieties, pinot noir, xarel·lo, vineyards, second fermentation, malolactic fermentation, organic acids, polyphenols, hplc, chemometric tools

Citation

Related articles…

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.