Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

Abstract

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology. For polyphenols is HPLC-UV/vis. Samples of musts, monovarietal wines, stabilized blended wines and cavas with 3 and 7 months of second fermentation are being studied. Data will be treated using boxplots to see the predominant compounds and chemometric tools such as Principal Component Analysis (PCA) to establish correlations and Partial Least Squares (PLS) for predictions between samples. By the moment, results in Pinot Noir grape variety shown that quality A present high levels of tartaric, malic, citric and succinic acids in musts and wines and there is observed a decrease in citric acid and an increase of succinic acid during the second fermentation. The results of Xarel·lo grape variety shown lower levels of tartaric acid than in Pinot Noir grape variety. Nevertheless, quality A present high amounts of this acid. Qualities A and B present similar levels of malic acid but in quality A slightly higher. For citric acid no noticeable changes are observed from must to cava of 7 month. Quality A present higher levels of succinic acid. Lower values of malic acid and higher values of lactic acid are observed in qualities C and D, due to, the malolactic fermentation in both varieties and there is observed a decrease of tartaric acid from wines to cavas, due to, the tartaric stabilization. In conclusion, malic and tartaric acids are the most important compounds in the quality of cavas. This involves that the futures cavas will be able to age more time.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anaïs Izquierdo Llopart 

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.,Javier, SAURINA, Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.

Contact the author

Keywords

cava, wine quality, grape varieties, pinot noir, xarel·lo, vineyards, second fermentation, malolactic fermentation, organic acids, polyphenols, hplc, chemometric tools

Citation

Related articles…

Zoning of the Veneto region areas with Denomination of origin

To characterize in depth the enological productions according to the origin territories and to provide modern tools for the qualitative raising of the assorted typologies of wine produced, Veneto Agricoltura (the regional agency for the agriculture, forestry and food industry development), the Regional Government of Veneto (north-eastern Italy) and various Consortia of Producers have undertaken since 2002 a systematic classification of the viticultural territories by agro-ecological zoning to achieve a strategic project aimed to set Veneto as the first Italian region to have completed in a systematic and scientifically rigorous way the zoning of most of its Denomination of Origin areas.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Grapevine is one of the crops that may suffer more negative impacts
under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].