The use of Hanseniaspora vineae on the production of base sparkling wine

Abstract

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv. Branched-chain fatty acids were found in lower concentration in wines fermented with Hv. Additionally, despite the higher concentration of tryptophol and indolacetic acid in the Hv-fermented wines, no significant differences were displayed in 2-aminoacetophenone content at the end of the alcoholic fermentation. Furthermore, it has not been found a clear trend on the potential development of this marker as a typical aging defect. Results suggest a different nutrient demand between the two yeast species with a strong matrix effect on the performances of Hv. Further research is required to elucidate this aspect. From a flavour enhancement perspective, all together these results highlight the potential of Hv strain as an interesting alternative for sparkling base production with a notable floral aroma.   

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tomas Roman 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.,Nicola CAPPELLO, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Adelaide GALLO Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Mauro PAOLINI, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Tiziana NARDIN, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Sergio MOSER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Francisco CARRAU, Universidad de la Republica, Area Enologia y Biotecnología de Fermentaciones, Facultad de Química, Montevideo, Uruguay Rémi SCHNEIDER, Oenoborands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France Roberto LARCHER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.

Contact the author

Keywords

hanseniaspora vineae; sparkling wine; aroma; yeast nutrition; 2-aminoacetophenone

Citation

Related articles…

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Crafting wine’s signature: exploring volatile compounds from terroir to aging

The unique characteristics of terroir play a fundamental role in shaping the identity and quality of wines, influencing the aromatic complexity of young wines and their long-term aging potential. The volatile compounds responsible for these aromas are crucial to identifying and appreciating a given wine.

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).