The use of Hanseniaspora vineae on the production of base sparkling wine

Abstract

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv. Branched-chain fatty acids were found in lower concentration in wines fermented with Hv. Additionally, despite the higher concentration of tryptophol and indolacetic acid in the Hv-fermented wines, no significant differences were displayed in 2-aminoacetophenone content at the end of the alcoholic fermentation. Furthermore, it has not been found a clear trend on the potential development of this marker as a typical aging defect. Results suggest a different nutrient demand between the two yeast species with a strong matrix effect on the performances of Hv. Further research is required to elucidate this aspect. From a flavour enhancement perspective, all together these results highlight the potential of Hv strain as an interesting alternative for sparkling base production with a notable floral aroma.   

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tomas Roman 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.,Nicola CAPPELLO, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Adelaide GALLO Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Mauro PAOLINI, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Tiziana NARDIN, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Sergio MOSER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Francisco CARRAU, Universidad de la Republica, Area Enologia y Biotecnología de Fermentaciones, Facultad de Química, Montevideo, Uruguay Rémi SCHNEIDER, Oenoborands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France Roberto LARCHER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.

Contact the author

Keywords

hanseniaspora vineae; sparkling wine; aroma; yeast nutrition; 2-aminoacetophenone

Citation

Related articles…

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Projected changes of grapevine phenology in Belgian and South African vineyards under climate change scenarios

The concept of ‘terroir’ describes the interplay of the environmental factors that affect the grapevine. This includes but is not limited to climate, soil composition, vineyard management, topography, and geology.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.