Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

Abstract

AIM – The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS: Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

RESULTS: The results showed that all the samples had higher alcoholic content and residual sugar, ranging between 14.7 and 17 (% v/v), and 0.8 g/l to 18 g/l, respectively. Volatile acidity was less than 1 g/l in all wines, except in that obtained from withered grapes alone, probably due to stuck fermentations. In some of the wines, after fermentation, mousiness was clearly perceived.

CONCLUSIONS:

The obtained wines showed that it is possible to obtain acceptable products closely following the relevant protocols described in classical Roman manuals. The main problem was the detection of the mousy off-flavour that can be associated with the absence of sulphur dioxide addition to the musts before fermentation.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manuel Malfeito-Ferreira

Linking Landscape Environment Agriculture and Food (LEAF) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal, Mkrtich Harutyunyan – Linking Landscape Environment Agriculture and Food (LEAF) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal, Joana Granja-Soares – Enology Laboratory (DCEB), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

Contact the author

Keywords

sweet wines; dehydrated grapes; historical wines; muscat of alexandria

Citation

Related articles…

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).