Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Abstract

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor. The casks seasoned process with Oloroso Sherry is usually carried out following a static ageing system, known as Añadas, although the traditional dynamic system from Sherry area is also employed, known as Criaderas and Solera. The Brandy de Jerez ageing must be carried out in the Criaderas and Solera system. However, there are other brandies that can be aged in static systems. There are not many studies about the cask seasoning and its impact in brandy ageing. Due to the growing market and the current interest in the Sherry Casks, it is interesting to deepen the knowledge about them. In the present work, an analytical characterization of the Oloroso Sherry used in the seasoning casks process was carried out to determine how it affects the wine. The physicochemical characterization and the sensory analysis of brandy aged in Sherry Casks were also studied, evaluating how it modifies his organoleptic properties. The effect of the brandy ageing system was also evaluated. The casks had been seasoned during 4 years with Oloroso Sherry and the brandies were characterized after 1 year of ageing. Two ageing systems were used for the experiences: dynamic (Criaderas and Solera) and static (Añadas). The results have been also compared with brandy aged in new casks. Levels of potassium and tartaric acid in Oloroso Sherry decrease after 4 years of seasoning wood. Total and volatile acidity, glycerin, ethyl acetate, ethyl lactate, ethyl succinate, dry extract and PTI increase their concentration during the process.A similar evolution was observed between brandies aged in static and dynamic system. Comparing the results with brandies aged in new casks, big differences were found. The level of wood compounds detected in brandies aged in new casks were much larger than in brandies aged in seasoned casks. However, the brandies aged in used barrels were judged more balanced than those aged in new barrels.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

MARÍA GUERRERO CHANIVET

1.- Bodegas Fundador S.L.U. Research and Development Department. C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera, Cádiz, Spain.  2.- Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz,  11510, Puerto Real, Cádiz, Spain.,MANUEL JOSÉ VALCÁRCEL MUÑOZ (1)   M. VALME GARCÍA MORENO (2)  DANIEL BUTRÓN BENÍTEZ (1,2)  M. CARMEN DODERO RODRÍGUEZ (2)  DOMINICO A. GUILLÉN SÁNCHEZ (2)  (1) Bodegas Fundador S.L.U. Research and Development Department. C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera, Cádiz, Spain.  (2) Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz, 11510, Puerto Real, Cádiz, Spain.

Contact the author

Keywords

oloroso sherry, sherry cask, seasoning, brandy de jerez, ageing

Citation

Related articles…

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.  

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.