Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Abstract

AIMS: The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines.

METHODS: Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

RESULTS: Base wine chemical composition included TA 8.9 (g/L), pH 3.3, residual sugar 2g/L and 12 (mg N/L) YAN, so a YAN addition of 30ppm was made. There were no differences in the rate of yeast acclimation between cane and beet sugar wines, or between glucose and fructose concentrations during the second fermentation. GC-MS analysis is still being completed.

CONCLUSION: 

VOC differences are due to the raw material used (cane or Canadian-grown beet), and their respective processing methods. Winemakers can use this knowledge to adjust the flavor profile of sparkling wines, although further analysis during aging in contact with yeast lees is needed for the long-term effect of each sugar on the final wine.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belinda Kemp, Andrew Wilson,  Hannah Charnock, 

Cool Climate Oenology & Viticulture Institute (CCOVI), Brock University, St Catharines, L2S 3A1, Ontario, Canada., Department of Biological Sciences, Brock University, St Catharines, L2S 3A1, Ontario, Canada.  

Contact the author

Keywords

sparkling wine, auxerrois, volatile aroma compounds, cane and beet sugar

Citation

Related articles…

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

Evaluating the suitability of hyper- and multispectral imaging to detect endogenic diseases in grapevine

Endogenic diseases often arise from pathogens that exist within the plant tissue, including fungi, bacteria, and viruses, which can remain latent and then emerge under stress conditions or favorable environmental conditions, causing symptoms that weaken vines or can lead to plant death.

Amphora Wines: To Pitch Or Not To Pitch

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.