Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Abstract

AIMS: The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines.

METHODS: Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

RESULTS: Base wine chemical composition included TA 8.9 (g/L), pH 3.3, residual sugar 2g/L and 12 (mg N/L) YAN, so a YAN addition of 30ppm was made. There were no differences in the rate of yeast acclimation between cane and beet sugar wines, or between glucose and fructose concentrations during the second fermentation. GC-MS analysis is still being completed.

CONCLUSION: 

VOC differences are due to the raw material used (cane or Canadian-grown beet), and their respective processing methods. Winemakers can use this knowledge to adjust the flavor profile of sparkling wines, although further analysis during aging in contact with yeast lees is needed for the long-term effect of each sugar on the final wine.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belinda Kemp, Andrew Wilson,  Hannah Charnock, 

Cool Climate Oenology & Viticulture Institute (CCOVI), Brock University, St Catharines, L2S 3A1, Ontario, Canada., Department of Biological Sciences, Brock University, St Catharines, L2S 3A1, Ontario, Canada.  

Contact the author

Keywords

sparkling wine, auxerrois, volatile aroma compounds, cane and beet sugar

Citation

Related articles…

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes.

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).