Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Abstract

AIMS: The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines.

METHODS: Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

RESULTS: Base wine chemical composition included TA 8.9 (g/L), pH 3.3, residual sugar 2g/L and 12 (mg N/L) YAN, so a YAN addition of 30ppm was made. There were no differences in the rate of yeast acclimation between cane and beet sugar wines, or between glucose and fructose concentrations during the second fermentation. GC-MS analysis is still being completed.

CONCLUSION: 

VOC differences are due to the raw material used (cane or Canadian-grown beet), and their respective processing methods. Winemakers can use this knowledge to adjust the flavor profile of sparkling wines, although further analysis during aging in contact with yeast lees is needed for the long-term effect of each sugar on the final wine.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belinda Kemp, Andrew Wilson,  Hannah Charnock, 

Cool Climate Oenology & Viticulture Institute (CCOVI), Brock University, St Catharines, L2S 3A1, Ontario, Canada., Department of Biological Sciences, Brock University, St Catharines, L2S 3A1, Ontario, Canada.  

Contact the author

Keywords

sparkling wine, auxerrois, volatile aroma compounds, cane and beet sugar

Citation

Related articles…

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Valorization of winemaking by-products through circular economy approaches

Winemaking generates significant amounts of by-products, such as grape pomace and wine lees, which are primarily used for distillation and composting.

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.