Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

Abstract

AIMS: The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines.

METHODS: Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

RESULTS: Base wine chemical composition included TA 8.9 (g/L), pH 3.3, residual sugar 2g/L and 12 (mg N/L) YAN, so a YAN addition of 30ppm was made. There were no differences in the rate of yeast acclimation between cane and beet sugar wines, or between glucose and fructose concentrations during the second fermentation. GC-MS analysis is still being completed.

CONCLUSION: 

VOC differences are due to the raw material used (cane or Canadian-grown beet), and their respective processing methods. Winemakers can use this knowledge to adjust the flavor profile of sparkling wines, although further analysis during aging in contact with yeast lees is needed for the long-term effect of each sugar on the final wine.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belinda Kemp, Andrew Wilson,  Hannah Charnock, 

Cool Climate Oenology & Viticulture Institute (CCOVI), Brock University, St Catharines, L2S 3A1, Ontario, Canada., Department of Biological Sciences, Brock University, St Catharines, L2S 3A1, Ontario, Canada.  

Contact the author

Keywords

sparkling wine, auxerrois, volatile aroma compounds, cane and beet sugar

Citation

Related articles…

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

Green Vineyards: skills development for wine industry personnel: responding to the challenges of climate change

A fair and sustainable society, with a modern, resource-efficient and competitive economy cannot be achieved without a workforce to support it.