Macrowine 2021
IVES 9 IVES Conference Series 9 White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Abstract

AIM: Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault.

METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

RESULTS: Generally, green glass bottles secured wine quality for the tested period. Only a few flint glass bottled wines developed the fault after 1-2 days of supermarket shelf life, but all developed the fault after 3-4 weeks. Storing the wines in dark and cold after a period of exposure to light did not eliminate the fault. A limit of up to 20-30 UVI of UV light passing through the glass could be set, considering the relative UV light in respect to the sensor measurements and the glass type. Moreover, wines bottled in flint glass after two days of shelf life had already lost more chromatic intensity and yellow hue than the same wines bottled in the green glass after 50 days.

CONCLUSIONS:

Light-strike wine fault is irreversible, occurs in all white wines, even if some are more resistant than others are, and the dark colored glass bottle is the best solution to avoid the problem.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas, Silvia, CARLIN, Stefano, DALLEDONNE, Matthias, SCHOLZ,  Antonio, CATAPANO, Wenda srl, Bologna,  Fulvio, MATTIVI, 

Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all’Adige, Italy, Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy

Contact the author

Keywords

shelf-life; wine fault; taste of light; storage; light-strike; cielab; sensors; pinot gris; chardonnay

Citation

Related articles…

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.