Macrowine 2021
IVES 9 IVES Conference Series 9 White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Abstract

AIM: Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault.

METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

RESULTS: Generally, green glass bottles secured wine quality for the tested period. Only a few flint glass bottled wines developed the fault after 1-2 days of supermarket shelf life, but all developed the fault after 3-4 weeks. Storing the wines in dark and cold after a period of exposure to light did not eliminate the fault. A limit of up to 20-30 UVI of UV light passing through the glass could be set, considering the relative UV light in respect to the sensor measurements and the glass type. Moreover, wines bottled in flint glass after two days of shelf life had already lost more chromatic intensity and yellow hue than the same wines bottled in the green glass after 50 days.

CONCLUSIONS:

Light-strike wine fault is irreversible, occurs in all white wines, even if some are more resistant than others are, and the dark colored glass bottle is the best solution to avoid the problem.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas, Silvia, CARLIN, Stefano, DALLEDONNE, Matthias, SCHOLZ,  Antonio, CATAPANO, Wenda srl, Bologna,  Fulvio, MATTIVI, 

Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all’Adige, Italy, Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy

Contact the author

Keywords

shelf-life; wine fault; taste of light; storage; light-strike; cielab; sensors; pinot gris; chardonnay

Citation

Related articles…

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.