Macrowine 2021
IVES 9 IVES Conference Series 9 White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Abstract

AIM: Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault.

METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

RESULTS: Generally, green glass bottles secured wine quality for the tested period. Only a few flint glass bottled wines developed the fault after 1-2 days of supermarket shelf life, but all developed the fault after 3-4 weeks. Storing the wines in dark and cold after a period of exposure to light did not eliminate the fault. A limit of up to 20-30 UVI of UV light passing through the glass could be set, considering the relative UV light in respect to the sensor measurements and the glass type. Moreover, wines bottled in flint glass after two days of shelf life had already lost more chromatic intensity and yellow hue than the same wines bottled in the green glass after 50 days.

CONCLUSIONS:

Light-strike wine fault is irreversible, occurs in all white wines, even if some are more resistant than others are, and the dark colored glass bottle is the best solution to avoid the problem.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas, Silvia, CARLIN, Stefano, DALLEDONNE, Matthias, SCHOLZ,  Antonio, CATAPANO, Wenda srl, Bologna,  Fulvio, MATTIVI, 

Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all’Adige, Italy, Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy

Contact the author

Keywords

shelf-life; wine fault; taste of light; storage; light-strike; cielab; sensors; pinot gris; chardonnay

Citation

Related articles…

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Climatic zoning and viticulture in Galicia (North West Spain)

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area.

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.