Macrowine 2021
IVES 9 IVES Conference Series 9 Relationship between chemical parameters of tannins and in-mouth attributes of grape phenolic fractions

Relationship between chemical parameters of tannins and in-mouth attributes of grape phenolic fractions

Abstract

AIM: Establish relationships between taste and mouthfeel properties of grapes and tannin-related chemical parameters.

METHODS: Tempranillo Tinto and Garnacha Tinta grapes were harvested from distinct blocks in different dates; each sample collection date was separated by one week. Grapes were destemmed and macerated in 15% of ethanol for one week. The polyphenolic fraction (PF) of samples was submitted to solid phase extraction on C18 cartridges and recovered with ethanol. PFs were reconstituted in wine model and their taste and mouthfeel properties were characterised by rate-K-attributes methodology. In parallel, concentration (TC) and activity (TAc) of tannins as well as the concentration of tannins linked to anthocyanins (T-A) were determined using HPLC-UV–VIS.

RESULTS: Garnacha PFs show significatively lower values for TAc, TC and the concentration of polymeric pigments (T-A) than Tempranillo PFs. On the one hand, for the Garnacha PFs, TAc and TC present significant and positive correlations with the three dry-related terms evaluated (i.e.: “dry”, “dry on the tongue side” and “dry palate”). Besides, TC also shows negative correlations with “silky” and “watery” atributes and the concentration of polymeric pigments presents a positive correlation with the overall dry-related term: “dry” and a negative relationship with “fleshy”, “silky” and “gummy”. On the other hand, Tempranillo PFs do not present significant sensochemical correlations, which could be attributed to the fact that the chemical parameters of the PFs evaluated present a small variability inducing none significant sensory differences.

CONCLUSIONS:

The presented approach enables to have a representative pool of phenolic fractions of grapes. Significant correlations between mouthfeel terms such as “dry”, “silky”, “watery”, “fleshy”, “silky” and “gummy” and the chemical parameters measured are observed.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara, Ferrero-Del-Teso , María-Pilar, SAENZ-NAVAJAS, Vicente, FERREIRA,  FERNANDEZ-ZURBANO, 

Institute of Grapevine and Wine Sciences (UR-CSIC-GR). La Rioja, Spain. University of Zaragoza, IA2, Spain.  Purificación, 

Contact the author

Keywords

mouthfeel, tannin activity, tannin concentration

Citation

Related articles…

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.