Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Abstract

AIM: Sulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010). In the present work polysulfides from varietal thiols 4MMP and 3MH were identified for the first time in synthetic and real wines. Additionally, the evolution of glutathionyl and cysteinyl polysulfides was followed during fermentation.

METHODS: For the study of thiolated polysulfides, synthetic standards, musts and wines and commercial SB wines were supplemented with copper sulfate and wettable sulfur to induce condensation reactions. For the evolution study, synthetic must and Chardonnay juice were supplemented with elemental sulfur, CuSO4, both, or nothing (control) and subsequently fermented until sugar dryness was reached (after 18 days). All samples were analysed using ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap).

RESULTS: Thiolated polysulfides with up to 4 sulfur atoms were successfully recovered from the synthetic standards, musts and wines and characterized using Compound Discoverer. The evolution study showed different patterns of polysulfide formation for the different fermenting musts, which were assigned to the difference in matrix composition and matrix complexity. Moreover, significant differences in accumulation were revealed between the differently treated musts.

CONCLUSIONS:

The UHPLC/HRMS method used in both studies was successfully applied to detect polysulfides in different spiked synthetic and real wines. Differences between treatments and matrices proved the influence of known and unknown compounds playing an important role in polysulfide formation. The present method can be applied to perform ongoing polysulfide studies.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susanne Dekker , Tiziana Nardin, Mirko Mattana, Igor Fochi, Roberto Larcher, Katryna van Leeuwen, Bruno Fedrizzi, Cinzia Dell’Anna, 

Edmund Mach Foundation, Thermo Fisher Scientific SpA,University of Auckland

Contact the author

Keywords

LC-HRMS; diorganopolysulfanes; polysulfides; thiols; cysteine; glutathione; wine

Citation

Related articles…

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality