Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Abstract

AIM: Sulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010). In the present work polysulfides from varietal thiols 4MMP and 3MH were identified for the first time in synthetic and real wines. Additionally, the evolution of glutathionyl and cysteinyl polysulfides was followed during fermentation.

METHODS: For the study of thiolated polysulfides, synthetic standards, musts and wines and commercial SB wines were supplemented with copper sulfate and wettable sulfur to induce condensation reactions. For the evolution study, synthetic must and Chardonnay juice were supplemented with elemental sulfur, CuSO4, both, or nothing (control) and subsequently fermented until sugar dryness was reached (after 18 days). All samples were analysed using ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap).

RESULTS: Thiolated polysulfides with up to 4 sulfur atoms were successfully recovered from the synthetic standards, musts and wines and characterized using Compound Discoverer. The evolution study showed different patterns of polysulfide formation for the different fermenting musts, which were assigned to the difference in matrix composition and matrix complexity. Moreover, significant differences in accumulation were revealed between the differently treated musts.

CONCLUSIONS:

The UHPLC/HRMS method used in both studies was successfully applied to detect polysulfides in different spiked synthetic and real wines. Differences between treatments and matrices proved the influence of known and unknown compounds playing an important role in polysulfide formation. The present method can be applied to perform ongoing polysulfide studies.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susanne Dekker , Tiziana Nardin, Mirko Mattana, Igor Fochi, Roberto Larcher, Katryna van Leeuwen, Bruno Fedrizzi, Cinzia Dell’Anna, 

Edmund Mach Foundation, Thermo Fisher Scientific SpA,University of Auckland

Contact the author

Keywords

LC-HRMS; diorganopolysulfanes; polysulfides; thiols; cysteine; glutathione; wine

Citation

Related articles…

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.