Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Abstract

AIM: Sulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010). In the present work polysulfides from varietal thiols 4MMP and 3MH were identified for the first time in synthetic and real wines. Additionally, the evolution of glutathionyl and cysteinyl polysulfides was followed during fermentation.

METHODS: For the study of thiolated polysulfides, synthetic standards, musts and wines and commercial SB wines were supplemented with copper sulfate and wettable sulfur to induce condensation reactions. For the evolution study, synthetic must and Chardonnay juice were supplemented with elemental sulfur, CuSO4, both, or nothing (control) and subsequently fermented until sugar dryness was reached (after 18 days). All samples were analysed using ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap).

RESULTS: Thiolated polysulfides with up to 4 sulfur atoms were successfully recovered from the synthetic standards, musts and wines and characterized using Compound Discoverer. The evolution study showed different patterns of polysulfide formation for the different fermenting musts, which were assigned to the difference in matrix composition and matrix complexity. Moreover, significant differences in accumulation were revealed between the differently treated musts.

CONCLUSIONS:

The UHPLC/HRMS method used in both studies was successfully applied to detect polysulfides in different spiked synthetic and real wines. Differences between treatments and matrices proved the influence of known and unknown compounds playing an important role in polysulfide formation. The present method can be applied to perform ongoing polysulfide studies.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susanne Dekker , Tiziana Nardin, Mirko Mattana, Igor Fochi, Roberto Larcher, Katryna van Leeuwen, Bruno Fedrizzi, Cinzia Dell’Anna, 

Edmund Mach Foundation, Thermo Fisher Scientific SpA,University of Auckland

Contact the author

Keywords

LC-HRMS; diorganopolysulfanes; polysulfides; thiols; cysteine; glutathione; wine

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties