Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Abstract

AIM: Sulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010). In the present work polysulfides from varietal thiols 4MMP and 3MH were identified for the first time in synthetic and real wines. Additionally, the evolution of glutathionyl and cysteinyl polysulfides was followed during fermentation.

METHODS: For the study of thiolated polysulfides, synthetic standards, musts and wines and commercial SB wines were supplemented with copper sulfate and wettable sulfur to induce condensation reactions. For the evolution study, synthetic must and Chardonnay juice were supplemented with elemental sulfur, CuSO4, both, or nothing (control) and subsequently fermented until sugar dryness was reached (after 18 days). All samples were analysed using ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap).

RESULTS: Thiolated polysulfides with up to 4 sulfur atoms were successfully recovered from the synthetic standards, musts and wines and characterized using Compound Discoverer. The evolution study showed different patterns of polysulfide formation for the different fermenting musts, which were assigned to the difference in matrix composition and matrix complexity. Moreover, significant differences in accumulation were revealed between the differently treated musts.

CONCLUSIONS:

The UHPLC/HRMS method used in both studies was successfully applied to detect polysulfides in different spiked synthetic and real wines. Differences between treatments and matrices proved the influence of known and unknown compounds playing an important role in polysulfide formation. The present method can be applied to perform ongoing polysulfide studies.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susanne Dekker , Tiziana Nardin, Mirko Mattana, Igor Fochi, Roberto Larcher, Katryna van Leeuwen, Bruno Fedrizzi, Cinzia Dell’Anna, 

Edmund Mach Foundation, Thermo Fisher Scientific SpA,University of Auckland

Contact the author

Keywords

LC-HRMS; diorganopolysulfanes; polysulfides; thiols; cysteine; glutathione; wine

Citation

Related articles…

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product.

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.