Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

Abstract

AIM: Sulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010). In the present work polysulfides from varietal thiols 4MMP and 3MH were identified for the first time in synthetic and real wines. Additionally, the evolution of glutathionyl and cysteinyl polysulfides was followed during fermentation.

METHODS: For the study of thiolated polysulfides, synthetic standards, musts and wines and commercial SB wines were supplemented with copper sulfate and wettable sulfur to induce condensation reactions. For the evolution study, synthetic must and Chardonnay juice were supplemented with elemental sulfur, CuSO4, both, or nothing (control) and subsequently fermented until sugar dryness was reached (after 18 days). All samples were analysed using ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap).

RESULTS: Thiolated polysulfides with up to 4 sulfur atoms were successfully recovered from the synthetic standards, musts and wines and characterized using Compound Discoverer. The evolution study showed different patterns of polysulfide formation for the different fermenting musts, which were assigned to the difference in matrix composition and matrix complexity. Moreover, significant differences in accumulation were revealed between the differently treated musts.

CONCLUSIONS:

The UHPLC/HRMS method used in both studies was successfully applied to detect polysulfides in different spiked synthetic and real wines. Differences between treatments and matrices proved the influence of known and unknown compounds playing an important role in polysulfide formation. The present method can be applied to perform ongoing polysulfide studies.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susanne Dekker , Tiziana Nardin, Mirko Mattana, Igor Fochi, Roberto Larcher, Katryna van Leeuwen, Bruno Fedrizzi, Cinzia Dell’Anna, 

Edmund Mach Foundation, Thermo Fisher Scientific SpA,University of Auckland

Contact the author

Keywords

LC-HRMS; diorganopolysulfanes; polysulfides; thiols; cysteine; glutathione; wine

Citation

Related articles…

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.