Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

Abstract

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

METHODS: Sensory analysis of numerous aromatic reconstitutions in dilute alcohol solution, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wines esters perception. Then, the impact of these non-volatile molecules on esters volatility, and thus taster stimulation, was evaluated thanks to the determination of partition coefficients which were correlated with sensory results

RESULTS: Triangular test revealed a significant odor difference between a fruity pool containing esters and the same fruity pool in mixture with proanthocyanidic tannins. The establishment of particular “detection thresholds” revealed that the “detection threshold” of the fruity pool was lower in dilute alcohol solution alone than when supplemented with tannins what demonstrated that tannins had a masking effect on the perception of the fruity pool. Sensory profiles evaluation, showed that the average scores for fruity notes were significantly lower for the fruity pool supplemented with tannins. These results confirmed the sensory importance of tannins. Finally, the evaluation of esters partition coefficient revealed a decrease of the volatility of esters when tannins were present in the matrix, thus corroborating sensory evaluation results.

CONCLUSIONS:

Presence of proanthocyanidic tannins decrease esters volatility, thus reducing orthonasal taster stimulation and consequently impacting red wine fruity notes perception.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jean-Christophe Barbe, Villenave d’Ornon, BARBE

Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 France, 

Contact the author

Citation

Related articles…

Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

AIM: Stalks are empirically known to bring many benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity. Not much used on Swiss grape varieties, the aim of this study was to identify the relevance of using this type of winemaking in the case of Gamay and Gamaret red grape varieties.

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.