Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

Abstract

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

METHODS: Sensory analysis of numerous aromatic reconstitutions in dilute alcohol solution, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wines esters perception. Then, the impact of these non-volatile molecules on esters volatility, and thus taster stimulation, was evaluated thanks to the determination of partition coefficients which were correlated with sensory results

RESULTS: Triangular test revealed a significant odor difference between a fruity pool containing esters and the same fruity pool in mixture with proanthocyanidic tannins. The establishment of particular “detection thresholds” revealed that the “detection threshold” of the fruity pool was lower in dilute alcohol solution alone than when supplemented with tannins what demonstrated that tannins had a masking effect on the perception of the fruity pool. Sensory profiles evaluation, showed that the average scores for fruity notes were significantly lower for the fruity pool supplemented with tannins. These results confirmed the sensory importance of tannins. Finally, the evaluation of esters partition coefficient revealed a decrease of the volatility of esters when tannins were present in the matrix, thus corroborating sensory evaluation results.

CONCLUSIONS:

Presence of proanthocyanidic tannins decrease esters volatility, thus reducing orthonasal taster stimulation and consequently impacting red wine fruity notes perception.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jean-Christophe Barbe, Villenave d’Ornon, BARBE

Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 France, 

Contact the author

Citation

Related articles…

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes.