Macrowine 2021
IVES 9 IVES Conference Series 9 Adsorption capacity of phenolics compounds by polyaniline materials in model solution

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

Abstract

AIM: The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions.

METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications. The synthesis and characterization of polyaniline emeraldine base (PANI-EB) and different PANI 50, 100, 150 (polyaniline-PVPP composites where 50, 100, 150 are amount of PVPP) was prepared according to what was reported by Marican et al. (2014). Once the selected contact times were over, the samples were filtered and were by HPLC-DAD, following the methodology described by Gómez-Alonso et al. (2007). In brief, the separation was performed using a reverse-phased LiChrosorb® RP-18 (5 μm) column (250 mm × 4 mm ID) operating at 20 ºC. The injection volume was 25 μL, and for detection and quantification of compounds, the chromatograms were recorded at 280, 320 and 360 nm.

RESULTS: Regardless of the polymer used, the compounds having more affinity for PANI were gallic and caffeic acid, whereas rutin and (+)-catechin were the least removed. For instance, the adsorption percentage of gallic and caffeic acid, with a 4 g/L PANI concentration and 8 h of contact time, reached more than 90% whereas the removal of rutin was lower than 40%. Instead, the phenolic concertation of the samples where no polymer was added (0 g/L of PANI) remain stable over time, very close to 50 mg /L for each of the phenols evaluated. As expected, the concentration of the five phenols decreased as the contact time increased. As an example, a 2 g/L addition of PANI 50 produced a reduction of (-)-epicatechin concentration of 17 mg/L after 8 h of contact time and 25 mg/L after 24 h. Like so, the decrease in the concentration of all phenols was greater when more polymer was added.

CONCLUSIONS: The results obtained suggest that PANI Polymers could be an interesting alternative for analytical or experimental applications in which polyphenolcs need to be removed.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

María Navarro, JOHN AMALRAJ, V. FELIPE LAURIE

Talca University

Contact the author

Keywords

pani polymers, phenols, model wine solutions

Citation

Related articles…

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture).

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Black foot disease in South African vineyards and grapevine nurseries

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests,

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).