On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Abstract

AIM: Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis.

METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods. Consider the number of annotated VOCs: SPE sample preparation is most suitable for beer and red wine; 166 and 433 peaks were annotated respectively. For cider and white wine, most peaks were found by DHS (330) and L-L extraction (256). However, there is only a small fraction of VOCs can be found with all the sample preparation techniques. For known fermentative aromas, most of them can be found easily by all the sample preparation methods. SPME, compare to L-L extraction, mSBSE, and SPE, have a shortage of collection and concentration on lactone compounds and vinyl compounds.

CONCLUSIONS:

VOCs profiling results for the fermentative beverages vary based on the used sample preparation method. There isn’t one ideal method to collect and concentrate all the compounds. A good global coverage can be reached by combining the results from different sample preparation techniques.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Penghan Zhang , Silvia CARLIN, Fulvio MATTIVI, Urska VRHOVSEK,

Edmund Mach Foundation

Contact the author

Citation

Related articles…

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF. METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity

Exploring the genomic diversity of yeast involved in spontaneous fermentation. from studies to select autochthonous strains of different italian’s wineries to extensive phylogenetic survey about the italians’ population of s. cerevisiae

Modern winemakers must ensure effective alcoholic fermentation without losing the intrinsic biodiversity of the different oenological contexts. In this sense, the population of saccharomyces cerevisiae characteristic of wineries that traditionally do not use selected yeasts can represent an interesting reservoir of biodiversity.

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.