On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Abstract

AIM: Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis.

METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods. Consider the number of annotated VOCs: SPE sample preparation is most suitable for beer and red wine; 166 and 433 peaks were annotated respectively. For cider and white wine, most peaks were found by DHS (330) and L-L extraction (256). However, there is only a small fraction of VOCs can be found with all the sample preparation techniques. For known fermentative aromas, most of them can be found easily by all the sample preparation methods. SPME, compare to L-L extraction, mSBSE, and SPE, have a shortage of collection and concentration on lactone compounds and vinyl compounds.

CONCLUSIONS:

VOCs profiling results for the fermentative beverages vary based on the used sample preparation method. There isn’t one ideal method to collect and concentrate all the compounds. A good global coverage can be reached by combining the results from different sample preparation techniques.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Penghan Zhang , Silvia CARLIN, Fulvio MATTIVI, Urska VRHOVSEK,

Edmund Mach Foundation

Contact the author

Citation

Related articles…

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

Increasing the capacity of change and adaptation of agri-food chain: the Agri-food CHIP project

The increasing vulnerability of food systems is a pressing challenge amplified by global interconnectedness.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.