Terroir 2010 banner
IVES 9 IVES Conference Series 9 Tools for terroir classification for the grape variety Kékfrankos

Tools for terroir classification for the grape variety Kékfrankos

Abstract

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ‘vintage’ and ‘terroir’ on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Grapevine physiological responses (midday- and pre-dawn water potential, pressure–volume analysis and gas-exchange), yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. There was a close relationship between environmental conditions, Kékfrankos gas exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety–terroir interactions must always be considered.
Data of Geographycal Information System (GIS) performed in this study may serve as part of the data base, that we are engaged in the Eger wine district in Hungary.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Bálo (1), Z. Szilágyi (1), E. Szücs (1), M. Marschall (2), Z. Simon (2) and Zs. Zsófi (1)

(1) Research Institute of Károly Róbert College for Viticulture and Enology, Eger, 3301 Eger Kőlyuktető PO Box 83, Hungary
(2) Department of Plant Physiology, Eszterházy Károly College, Eger, 3300 Eger Leányka Street 6, Hungary

Contact the author

Keywords

Climate, grapevine, photosynthesis, terroir, water relations, water deficit, wine composition, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

Loose clustered vignoles clones reduce late season fruit rots

‘Vignoles’ is an aromatic, white-fruited wine grape variety valued by growers and wineries in the Eastern United States. Vignoles is grown in diverse locations in New York, Missouri, Indiana, Ohio, Pennsylvania, Illinois, Nebraska and Michigan. Consumers recognize and value the variety for its special wine quality.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.