Terroir 2010 banner
IVES 9 IVES Conference Series 9 Tools for terroir classification for the grape variety Kékfrankos

Tools for terroir classification for the grape variety Kékfrankos

Abstract

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ‘vintage’ and ‘terroir’ on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Grapevine physiological responses (midday- and pre-dawn water potential, pressure–volume analysis and gas-exchange), yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. There was a close relationship between environmental conditions, Kékfrankos gas exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety–terroir interactions must always be considered.
Data of Geographycal Information System (GIS) performed in this study may serve as part of the data base, that we are engaged in the Eger wine district in Hungary.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Bálo (1), Z. Szilágyi (1), E. Szücs (1), M. Marschall (2), Z. Simon (2) and Zs. Zsófi (1)

(1) Research Institute of Károly Róbert College for Viticulture and Enology, Eger, 3301 Eger Kőlyuktető PO Box 83, Hungary
(2) Department of Plant Physiology, Eszterházy Károly College, Eger, 3300 Eger Leányka Street 6, Hungary

Contact the author

Keywords

Climate, grapevine, photosynthesis, terroir, water relations, water deficit, wine composition, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴