Terroir 2010 banner
IVES 9 IVES Conference Series 9 Tools for terroir classification for the grape variety Kékfrankos

Tools for terroir classification for the grape variety Kékfrankos

Abstract

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ‘vintage’ and ‘terroir’ on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Grapevine physiological responses (midday- and pre-dawn water potential, pressure–volume analysis and gas-exchange), yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. There was a close relationship between environmental conditions, Kékfrankos gas exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety–terroir interactions must always be considered.
Data of Geographycal Information System (GIS) performed in this study may serve as part of the data base, that we are engaged in the Eger wine district in Hungary.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Bálo (1), Z. Szilágyi (1), E. Szücs (1), M. Marschall (2), Z. Simon (2) and Zs. Zsófi (1)

(1) Research Institute of Károly Róbert College for Viticulture and Enology, Eger, 3301 Eger Kőlyuktető PO Box 83, Hungary
(2) Department of Plant Physiology, Eszterházy Károly College, Eger, 3300 Eger Leányka Street 6, Hungary

Contact the author

Keywords

Climate, grapevine, photosynthesis, terroir, water relations, water deficit, wine composition, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

One of the characteristics of the terroir zoning studies that is more complex to manage is the scale dependence. Thus, terroir zoning studies of the same area at different scales are comparable but not equal. Fractal analysis has demonstrated to be a suitable tool to characterize and model natural elements within a defined range of scales.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].