Terroir 2010 banner
IVES 9 IVES Conference Series 9 Tools for terroir classification for the grape variety Kékfrankos

Tools for terroir classification for the grape variety Kékfrankos

Abstract

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ‘vintage’ and ‘terroir’ on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Grapevine physiological responses (midday- and pre-dawn water potential, pressure–volume analysis and gas-exchange), yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. There was a close relationship between environmental conditions, Kékfrankos gas exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety–terroir interactions must always be considered.
Data of Geographycal Information System (GIS) performed in this study may serve as part of the data base, that we are engaged in the Eger wine district in Hungary.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Bálo (1), Z. Szilágyi (1), E. Szücs (1), M. Marschall (2), Z. Simon (2) and Zs. Zsófi (1)

(1) Research Institute of Károly Róbert College for Viticulture and Enology, Eger, 3301 Eger Kőlyuktető PO Box 83, Hungary
(2) Department of Plant Physiology, Eszterházy Károly College, Eger, 3300 Eger Leányka Street 6, Hungary

Contact the author

Keywords

Climate, grapevine, photosynthesis, terroir, water relations, water deficit, wine composition, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Delaying grapevine budbreak and/or phenological stages

In the current climatic context, with milder winters leading to earlier budburst in most wine regions, vines are exposed to the risk of spring frosts for a longer period. Depending on the year, frost can lead to yield losses of between 20 and 100 %, jeopardizing the economic survival of wine estates. In addition, by destroying young shoots, spring frosts can impact the following season’s production, by reducing the number of canes available for pruning, for example. Late pruning is one method to combat spring frosts.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.