Terroir 2010 banner
IVES 9 IVES Conference Series 9 Tools for terroir classification for the grape variety Kékfrankos

Tools for terroir classification for the grape variety Kékfrankos

Abstract

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ‘vintage’ and ‘terroir’ on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Grapevine physiological responses (midday- and pre-dawn water potential, pressure–volume analysis and gas-exchange), yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. There was a close relationship between environmental conditions, Kékfrankos gas exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety–terroir interactions must always be considered.
Data of Geographycal Information System (GIS) performed in this study may serve as part of the data base, that we are engaged in the Eger wine district in Hungary.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Bálo (1), Z. Szilágyi (1), E. Szücs (1), M. Marschall (2), Z. Simon (2) and Zs. Zsófi (1)

(1) Research Institute of Károly Róbert College for Viticulture and Enology, Eger, 3301 Eger Kőlyuktető PO Box 83, Hungary
(2) Department of Plant Physiology, Eszterházy Károly College, Eger, 3300 Eger Leányka Street 6, Hungary

Contact the author

Keywords

Climate, grapevine, photosynthesis, terroir, water relations, water deficit, wine composition, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The South African vineyard landscapes: impact on long term cultural practices

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.

Under-vine cover crops: impact on weed development, yield and grape composition

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. 
The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.