Terroir 2010 banner
IVES 9 IVES Conference Series 9 Zonazione dell’area viticola doc durello

Zonazione dell’area viticola doc durello

Abstract

[English version below]

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona. Durante il quadriennio 2002-2005 si sono effettuati i rilievi vegeto-produttivi e le vinificazioni delle uve di questa varietà provenienti dalle 15 aree individuate attraverso un’indagine podologica del territorio di coltivazione Monti Lessini Durello, che si estende su un’ampia superficie nelle province di Verona e Vicenza. Un aspetto innovativo di questo lavoro e di aver introdotto, sebbene solo per un’annata, la valutazione del potenziale enologico del vino anche attraverso il processo di spumantizzazione con il metodo classico. In questo modo si è potuto poi verificare, attraverso l’analisi sensoriale, non solo le peculiarità delle diverse zone ma anche la loro attitudine al processo di spumantizzazione, confrontando la valutazione dei vini fermi con quelli spumante di ogni singola area vocazionale. Tale analisi ha evidenziato al di là delle diverse caratteristiche di ogni singola area l’attitudine di questo vitigno a dare origine a vini spumanti di elevata qualità.

The task of zoning plays a significant role in understanding the potential and suitability of a specific vine-growing area. Viticulture should always be considered in the light of the oenological objectives that one has in mind and the results of the vinification of grapes from different areas within the production zone under consideration are therefore of particular importance. The zoning of the Monti Lessini Durello D.O.C. area focused on the indigenous “Durella” variety, which is responsible for the majority of the zone’s viti-vinicultural production. During the four-year period of 2002-2005 we carried out surveys regarding vegetative and fruit yields, as well as vinifying grapes of this variety from the 15 areas we identified as a result of a pedological study of the region for the cultivation of Monti Lessini Durello, which covers quite a large area in the Provinces of Verona and Vicenza. An innovative aspect of this work was that – if only for one vintage – we also introduced an evaluation of the various wines’ oenological potential by subjecting them to prise de mousse. In this way, we were able to test, by means of sensory analysis, not only the peculiarities of the different zones but also their appropriateness for producing sparkling wines, comparing our evaluation of the still wine and the sparkling one from each specific production area. This analysis highlighted – apart from the different characteristics of each individual area – this variety’s aptitude for producing sparkling wines of very high quality.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. Tosi (1) , G. Benciolini (2), A. Lorenzoni (3), G. Ponchia (3), D. Tomasi (4)

(1) Centro per la Sperimentazione in Vitivinicoltura, Provincia di Verona (Italy)
(2) Pedologo Libero Professionista, Verona (Italy )
(3) Consorzio di Tutela Vino Lessini Durello DOC, Verona (Italy)
(4) Centro di Ricerca per la Viticoltura, Conegliano TV (Italy)

Contact the author

Keywords

Zonazione, Durella, Lessini, Verona

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.

Determination of secondary metabolites as quality and typicalness tracers in autochthonous vitis vinifera grapes and wines from Ischia isle

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...