Terroir 2010 banner
IVES 9 IVES Conference Series 9 Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

Abstract

[English version below]

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.
La necessità impellente di migliorare la produttività delle colture trova oggi un valido strumento nei nuovi metodi di perfezionamento della gestione del suolo agricolo che includono:
• mappaggio mediante remote sensing
• analisi e gestione dei dati mediante “geographic information systems” (GIS)
• analisi geofisiche mirate sito-specifiche
• carotaggi, trivellazioni ed escavazioni per determinare un “soil survey”

GEOSPHERA Ltd and TERR.A.IN. CNS, using the experience of its collaborators on natural, geological, geophysical and computer fields, provide solutions for Agriculture and precision viticulture farmers, growers, retailers and agricultural agronomic consultants.
The need to improve the productivity of crops, find today large aid in new methods of study and soil management, including:
• soil mapping using remote sensing
• analysis and data management using geographic information systems (GIS)
• geophysical site-specific targeted sampling
• drilling and excavation for the soil survey

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. Busnardo

Studio GeoSphera s. r. l. , Via G. Matteotti 20-int. 17 – 30035 Mirano (VE) Italia

Contact the author

Keywords

Agricoltura, viticoltura di precisione, remote sensing (GIS), campioni per analisi geofisiche, carotaggi ed escavazioni, soil survey, ARP
Agriculture, precision viticulture, remote sensing, GIS, geophysical sampling, drilling and excavation, soil survey, ARP

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.