Terroir 2010 banner
IVES 9 IVES Conference Series 9 Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

Abstract

[English version below]

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.
La necessità impellente di migliorare la produttività delle colture trova oggi un valido strumento nei nuovi metodi di perfezionamento della gestione del suolo agricolo che includono:
• mappaggio mediante remote sensing
• analisi e gestione dei dati mediante “geographic information systems” (GIS)
• analisi geofisiche mirate sito-specifiche
• carotaggi, trivellazioni ed escavazioni per determinare un “soil survey”

GEOSPHERA Ltd and TERR.A.IN. CNS, using the experience of its collaborators on natural, geological, geophysical and computer fields, provide solutions for Agriculture and precision viticulture farmers, growers, retailers and agricultural agronomic consultants.
The need to improve the productivity of crops, find today large aid in new methods of study and soil management, including:
• soil mapping using remote sensing
• analysis and data management using geographic information systems (GIS)
• geophysical site-specific targeted sampling
• drilling and excavation for the soil survey

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. Busnardo

Studio GeoSphera s. r. l. , Via G. Matteotti 20-int. 17 – 30035 Mirano (VE) Italia

Contact the author

Keywords

Agricoltura, viticoltura di precisione, remote sensing (GIS), campioni per analisi geofisiche, carotaggi ed escavazioni, soil survey, ARP
Agriculture, precision viticulture, remote sensing, GIS, geophysical sampling, drilling and excavation, soil survey, ARP

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.