Climate variability and its effects in the Penedès vineyard region (NE Spain)

Abstract

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield. Temperature increases are higher than in previous time periods, which together with the irregular rainfall distribution throughout the year give rise to significant water deficits for vine development. Water deficits are being exacerbated during the last years by the increase of temperatures which imply an increase of evapotranspiration. The dates at which each phenological stage starts and the length of the different phenological stages are affected by temperature (accumulated degree-days and daily air temperature difference), precipitation and water accumulated into the soil. Winegrape yield was also influenced by soil water availability.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C. Ramos, J.A. Martínez-Casasnovas

Department of Environment and Soil Science. University of Lleida.
Alcalde Rovira Roure 191, 25198, Lleida, Spain

Contact the author

Keywords

Evapotraspiration, Mediterranean climate, NE Spain, phenology, trends, yield

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Marketing terroir wines

The markets for quality wine are becoming more competitive as newer producers emerge and traditional producers improve their quality. The concept of terroir is one way to differenzi­ate wines in a competitive market and to enhance producer income.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.