Climate change impact study based on grapevine phenology modelling

Abstract

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties (Chardonnay, Szürkebarát (Pinot gris), Pinot blanc, Riesling, Hárslevelű) and their clone varieties in Hungary (Chardonnay 75 and 96, Riesling 239, 378, 391 and 49, Hárslevelű P.41 and K.9., Pinot blanc 54, 55 and D55, Szürkebarát 34 and 52). The base lower and upper temperatures have been determined by optimization, above which (threshold temperature) the accumulation of daily means is most active, or alternatively, below which the daily means are most sensitively expressed in the phenology. The model has been extended to the calculation of the end of the rest period (endodormancy), by optimization as well. We determined the lower and upper base temperatures separately for the budbreak and full bloom starting dates such that the lowest (normalized) sum of squares error, the lowest average absolute and the lowest maximum error of predictions can be achieved. We determined the optimal (lower) base temperature as 6 °C and the optimal starting date as the 41st Julian day of the year for the budbreak. Moreover, we set 10,45 °C and 26 °C as lower and upper optimal base temperatures for full bloom. The joint model was then applied to study the impact of climate change on budbreak and full bloom starting dates based on RegCM3.1 (regional) climate model. We calculated the expected shifts of budbreak and full bloom and proved that the changes are significant.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Ladányi (1), E. Hlaszny (2), Gy. Pernesz (3), Gy. Bisztray (2)

(1) Corvinus Univ. of Budapest, Dpt. of Mathematics and Informatics, Villányi út 29-43, H-1118, Budapest, Hungary
(2) Corvinus Univ. of Budapest, Dpt. Of Viticulture, Villányi út 29-43, H-1118, Budapest, Hungary
(3) Central Agricultural Office, Budapest, Hungary

Contact the authors

Keywords

budbreak, vegetation period, phenology model, biologically effective day degrees, full bloom, starting dates of phenological stages, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Potentiel des sols viticoles et qualité des vins

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.