Climate change impact study based on grapevine phenology modelling

Abstract

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties (Chardonnay, Szürkebarát (Pinot gris), Pinot blanc, Riesling, Hárslevelű) and their clone varieties in Hungary (Chardonnay 75 and 96, Riesling 239, 378, 391 and 49, Hárslevelű P.41 and K.9., Pinot blanc 54, 55 and D55, Szürkebarát 34 and 52). The base lower and upper temperatures have been determined by optimization, above which (threshold temperature) the accumulation of daily means is most active, or alternatively, below which the daily means are most sensitively expressed in the phenology. The model has been extended to the calculation of the end of the rest period (endodormancy), by optimization as well. We determined the lower and upper base temperatures separately for the budbreak and full bloom starting dates such that the lowest (normalized) sum of squares error, the lowest average absolute and the lowest maximum error of predictions can be achieved. We determined the optimal (lower) base temperature as 6 °C and the optimal starting date as the 41st Julian day of the year for the budbreak. Moreover, we set 10,45 °C and 26 °C as lower and upper optimal base temperatures for full bloom. The joint model was then applied to study the impact of climate change on budbreak and full bloom starting dates based on RegCM3.1 (regional) climate model. We calculated the expected shifts of budbreak and full bloom and proved that the changes are significant.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Ladányi (1), E. Hlaszny (2), Gy. Pernesz (3), Gy. Bisztray (2)

(1) Corvinus Univ. of Budapest, Dpt. of Mathematics and Informatics, Villányi út 29-43, H-1118, Budapest, Hungary
(2) Corvinus Univ. of Budapest, Dpt. Of Viticulture, Villányi út 29-43, H-1118, Budapest, Hungary
(3) Central Agricultural Office, Budapest, Hungary

Contact the authors

Keywords

budbreak, vegetation period, phenology model, biologically effective day degrees, full bloom, starting dates of phenological stages, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, Japan

This study analyses the actual situation regarding the legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, the centre of Japanese wine industry with more than 150 years of wine-making tradition.

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance