Climate change impact study based on grapevine phenology modelling

Abstract

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties (Chardonnay, Szürkebarát (Pinot gris), Pinot blanc, Riesling, Hárslevelű) and their clone varieties in Hungary (Chardonnay 75 and 96, Riesling 239, 378, 391 and 49, Hárslevelű P.41 and K.9., Pinot blanc 54, 55 and D55, Szürkebarát 34 and 52). The base lower and upper temperatures have been determined by optimization, above which (threshold temperature) the accumulation of daily means is most active, or alternatively, below which the daily means are most sensitively expressed in the phenology. The model has been extended to the calculation of the end of the rest period (endodormancy), by optimization as well. We determined the lower and upper base temperatures separately for the budbreak and full bloom starting dates such that the lowest (normalized) sum of squares error, the lowest average absolute and the lowest maximum error of predictions can be achieved. We determined the optimal (lower) base temperature as 6 °C and the optimal starting date as the 41st Julian day of the year for the budbreak. Moreover, we set 10,45 °C and 26 °C as lower and upper optimal base temperatures for full bloom. The joint model was then applied to study the impact of climate change on budbreak and full bloom starting dates based on RegCM3.1 (regional) climate model. We calculated the expected shifts of budbreak and full bloom and proved that the changes are significant.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Ladányi (1), E. Hlaszny (2), Gy. Pernesz (3), Gy. Bisztray (2)

(1) Corvinus Univ. of Budapest, Dpt. of Mathematics and Informatics, Villányi út 29-43, H-1118, Budapest, Hungary
(2) Corvinus Univ. of Budapest, Dpt. Of Viticulture, Villányi út 29-43, H-1118, Budapest, Hungary
(3) Central Agricultural Office, Budapest, Hungary

Contact the authors

Keywords

budbreak, vegetation period, phenology model, biologically effective day degrees, full bloom, starting dates of phenological stages, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region.

Application of uv-led in wine as an alternative to sulphur dioxide

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011).

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Grapevine varietal diversity as mitigation tool for climate change: Agronomic and oenologic potential of 14 foreign varieties grown in Languedoc region (France)

Climate change effects in Languedoc include an expected rise in temperatures, increased evapotranspiration as well as more severe and frequent climatic hazards, such as frost, drought periods and heat waves. For winegrowers theses phenomena impact both yield and quality, resulting in more frequent unbalanced wines. Research on identified mitigation tools for vineyard management is necessary to improve resilience of grapevine agrosystems. Varietal assortment is one of them. This study focuses on agronomic and oenologic potential of 14 foreign varieties grown in Languedoc French region. Fourteen grapevine varieties were monitored during 2021 from June until harvest on eight different sites, some of which occurring on more than one site adding up to 21 different modalities: 7 white varieties Alvarinho B, Assyrtiko B (2), Malvasia Istriana B, Parellada B, Verdejo B, Verdelho B, Xarello B, and 7 black varieties Saperavi N (2), Touriga nacional N, Baga N, Aleatico N, Montepulciano N (2), Primitivo N (3), Calabrese N (3). Varietals were compared through the following parameters: phenology was assessed by using the information collected in the Database Network of French Vine Conservatories (INRAE-SupAgro-IFV, 2005-2015). The number of inflorescences for shoots from secondary buds and bourillons and suckers were observed to assess post-bud break frost tolerance potential. Grapevine water status was studied through stem water potential measurement, observation of foliage symptoms of drought, and 𝛿13C on must. Frequencies and intensities of downy mildew, powdery mildew, and black rot attacks were estimated before harvest on leaves and clusters and botrytis at harvest to assess disease susceptibilities. Berry composition was monitored from end of veraison until harvest. Yield and mean bunch weight were also calculated. Varieties were then ranked on a 1-4 scale for each parameter and compared through PCA. Forty two stations of the Mediterranean basin were compared by PCA with the Multicriteria Climatic Classification indicators in order to confront the collected information during 2021 campaign to the hypothesis that plants coming from dry and hot regions are genetically adapted to such climatic conditions.