Analyse climatique à l’échelle des Coteaux du Layon

Abstract

[English version below]

Les études d’impact du climat sur la vigne nécessite de descendre à des échelles très fines car les facteurs climatiques sont tributaires de la topographie, la végétation, les expositions … Dans le cadre du programme ANR-JC Terviclim, 22 capteurs ont été installés dans les vignobles des Coteaux du Layon afin de caractériser le climat particulier de ces terroirs. L’analyse des températures montre de fortes disparités entre les data loggers et pourtant situés parfois sur les mêmes parcelles ou sur des parcelles voisines. Les indices bioclimatiques tels les degrés jours sont également contrastés suivant la situation des capteurs sur les coteaux.

Climate impact studies on vine require downscaling because climatic factors depend on topography, vegetation, orientation …In the framework of the ANR-JC Terviclim, 22 data loggers were settled in the “Coteaux du Layon” vineyards to characterize the particular climate of these terroirs. Temperatures analysis shows strong disparities between data loggers locate on the same plots or on nearby plots. Bioclimatic index as growing degree days are also contrasting depending on the data loggers situation in the vineyard.

Related articles…

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

The true cost of the vineyard landscape enhancement. First results in the Venezia biodistrict 

The research is part of the “Ecovinegoals” project, financed by Interreg Adrion funds. It aims to encourage the adoption and dissemination of agroecological practices in intensive wine-growing areas. The study focuses on cost analysis of the wine-growing landscape enhancement in an organic winery in order to provide a useful tool for winemakers to direct their investments in green infrastructures. One of the Italian pilot areas of the Ecovinegoals project is the Venezia Biodistrict, characterized by viticulture in a flat reclamation area of 105,800 hectares.