Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Abstract

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work, which shows only partial results because data from more vintages will be collected during the next vintages.
The proposed validation is based on the comparison of quality levels of the viticulture products (grapes) grown in different Homogeneous Soil Units (HSU) but classified as the same level of quality. HSUs classified as optimum in Ribera del Duero Denomination of Origin (D.O.) region were chosen for this validation study. The three more important Optimum Units were selected. They represented around of 50% of the global surface of vineyards on the Ribera del Duero viticulture D.O. zone. Five different vineyards in each Unit were chosen. Trying to select the most similar vineyards to reduce variability factors, other selection criteria applied were grape variety, clone, rootstocks, age, training systems and cultural practices.
Three grape samples were collected around of each selected vineyards at the “Technological maturity” stage of the grapes. Different oenological quality parameters were analysed on the collected grapes. After the statistical treatment of the whole analytical data, obtained from grapes collected during two consecutive vintages, some significant results can be pointed out. Among them, it is interesting to note that, in general, variability due to vintage was stronger than that due to the HSU. In a similar way, variability due to vineyards was also significant, and in general, it was bigger than variability due to Units. Furthermore, the whole data showed similar levels of quality after comparing grapes from each HSU studied.
These results seem to validate the proposed methodology. That is, the methodology is valid to determine HSU which can produce grape of a similar quality, and then it can be applied to the correct or appropriate use of the agriculture medium.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

González-SanJosé ML (1), Gómez-Miguel V (2), Rivero-Pérez MD (1), Mihnea M (1), Velasco-López T (1)

(1) Department of Biotechnology and Food Science. University of Burgos.
Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
(2) Dpto Edafología. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid,
28040 Madrid, Spain

Contact the author

Keywords

Viticulture zoning methodology, validation, grape, quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Identification and quantification of c-glucosidic ellagitannins and their derivative in red wine aged in oak barrels

The C-glycosidic ellagitannins constitute a subclass of hydrolyzable tannins of remarkable structural diversity. In this work we first achieved the hemisynthesis of flavano-ellagitannins, then we used them to develop a new efficient detection and quantification procedure for the C-glycosidic ellagitannins as well as flavano-ellagitannins.

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.