Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Abstract

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work, which shows only partial results because data from more vintages will be collected during the next vintages.
The proposed validation is based on the comparison of quality levels of the viticulture products (grapes) grown in different Homogeneous Soil Units (HSU) but classified as the same level of quality. HSUs classified as optimum in Ribera del Duero Denomination of Origin (D.O.) region were chosen for this validation study. The three more important Optimum Units were selected. They represented around of 50% of the global surface of vineyards on the Ribera del Duero viticulture D.O. zone. Five different vineyards in each Unit were chosen. Trying to select the most similar vineyards to reduce variability factors, other selection criteria applied were grape variety, clone, rootstocks, age, training systems and cultural practices.
Three grape samples were collected around of each selected vineyards at the “Technological maturity” stage of the grapes. Different oenological quality parameters were analysed on the collected grapes. After the statistical treatment of the whole analytical data, obtained from grapes collected during two consecutive vintages, some significant results can be pointed out. Among them, it is interesting to note that, in general, variability due to vintage was stronger than that due to the HSU. In a similar way, variability due to vineyards was also significant, and in general, it was bigger than variability due to Units. Furthermore, the whole data showed similar levels of quality after comparing grapes from each HSU studied.
These results seem to validate the proposed methodology. That is, the methodology is valid to determine HSU which can produce grape of a similar quality, and then it can be applied to the correct or appropriate use of the agriculture medium.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

González-SanJosé ML (1), Gómez-Miguel V (2), Rivero-Pérez MD (1), Mihnea M (1), Velasco-López T (1)

(1) Department of Biotechnology and Food Science. University of Burgos.
Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
(2) Dpto Edafología. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid,
28040 Madrid, Spain

Contact the author

Keywords

Viticulture zoning methodology, validation, grape, quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.