Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Abstract

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work, which shows only partial results because data from more vintages will be collected during the next vintages.
The proposed validation is based on the comparison of quality levels of the viticulture products (grapes) grown in different Homogeneous Soil Units (HSU) but classified as the same level of quality. HSUs classified as optimum in Ribera del Duero Denomination of Origin (D.O.) region were chosen for this validation study. The three more important Optimum Units were selected. They represented around of 50% of the global surface of vineyards on the Ribera del Duero viticulture D.O. zone. Five different vineyards in each Unit were chosen. Trying to select the most similar vineyards to reduce variability factors, other selection criteria applied were grape variety, clone, rootstocks, age, training systems and cultural practices.
Three grape samples were collected around of each selected vineyards at the “Technological maturity” stage of the grapes. Different oenological quality parameters were analysed on the collected grapes. After the statistical treatment of the whole analytical data, obtained from grapes collected during two consecutive vintages, some significant results can be pointed out. Among them, it is interesting to note that, in general, variability due to vintage was stronger than that due to the HSU. In a similar way, variability due to vineyards was also significant, and in general, it was bigger than variability due to Units. Furthermore, the whole data showed similar levels of quality after comparing grapes from each HSU studied.
These results seem to validate the proposed methodology. That is, the methodology is valid to determine HSU which can produce grape of a similar quality, and then it can be applied to the correct or appropriate use of the agriculture medium.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

González-SanJosé ML (1), Gómez-Miguel V (2), Rivero-Pérez MD (1), Mihnea M (1), Velasco-López T (1)

(1) Department of Biotechnology and Food Science. University of Burgos.
Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
(2) Dpto Edafología. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid,
28040 Madrid, Spain

Contact the author

Keywords

Viticulture zoning methodology, validation, grape, quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.