Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

Abstract

The objective of this work is to study the vulnerability of vineyard soil to compaction.
The process of soil compaction represents one of the eight threats to soil identified by European Commission.
It is important to know which soil is susceptible to compaction in order to be able to apply proper soil use and cultivation and to prevent real compaction. From this point of view, the evaluation of soil susceptibility to compaction on European level was done.
The DOC Piave area has been chosen for this study because it is one the most important of the north Italy and involves a great variety of soils.
The model used considers as significant factors drainage, surface organic carbon content and texture. It results that soils with low organic carbon content, medium fine or fine and moderately well drained to very poorly drained have high vulnerability to compaction.
A large part of the vineyard soil of the DOC Piave area has at least moderate vulnerability to compaction.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Piccolo (1), M. Bertaggia (1), G. Concheri (1), I. Vinci (2)

(1) Padua University, Department of Agricultural Biotechnology, Viale dell’Università 16, 35020 Legnaro (PD), Italy
(2) ARPAV, Regional Agency for Environmental Prevention and Protection, Regional Soil Observatory Via S. Barbara 5/A, 31100 Treviso, Italy

Contact the author

Keywords

vulnerability, compaction, vineyard, organic carbon, texture, drainage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-