Terroir 2010 banner
IVES 9 IVES Conference Series 9 Grapevine productivity modelling in the Portuguese Douro Region

Grapevine productivity modelling in the Portuguese Douro Region

Abstract

In Portugal, and particularly in the Demarcated Region of Douro (DDR), wine production has a great tradition, producing the unique and worldwide famous Port wine as well as other remarkably good table wines. In this study the impact of projected climate change to wine production is analysed for the DDR. A statistical grapevine yield model (GYM) is developed using climate parameters as predictors. Statistically significant correlations are identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle of grapevines. Close relationships between these climatic elements are found that influence the annual yield, with the GYM explaining over 50% of the total variance in the yield time series in recent decades. Furthermore, results point out a clear relationship between the vegetative cycle of grapevines and their basic climatic requirements: anomalously high (low) precipitations in March, during bud break, shoot and inflorescence development are favourable (adverse) to yield, while anomalously high temperatures in May (bloom) and June (berry development) favour yield. The GYM is applied to output from the regional climate model COSMO-CLM, which is shown to skilfully reproduce the GYM predictors. Considering ensemble simulations under the A1B emission scenario, a slight upward trend in yield is estimated to occur until about 2050, followed by a steep and continuous increase until the end of the 21st century, when yield is projected to be about 800 kg/ha above its current values. The results emphasise the potential of using GYM coupled with regional atmospheric models to assess variations in grapevine yield owed to climate change. Complementary studies are in process in order to evaluate possible phenological shifts and wine quality impacts.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J. A. Santos (1), A. C. Malheiro (1), M. K. Karremann (2), J. G. Pinto (2)

(1) Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
(2) Institute for Geophysics and Meteorology, University of Cologne, Kerpener Str. 13, 50923 Cologne, Germany

Contact the author

Keywords

Grapevine, Douro, Portugal, yield modelling, climate scenarios, CLM

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

Protein stabilization of white wines by stabilizing filtration: pilot studies

Protein stabilization is an important part of the winemaking process of white wines, and in this work we present the results of protein stabilization of different monovarietal wines (Xarel.lo, Chardonnay, and Muscat) by a continuous stabilizing filtration process using a column packed with zirconium oxide operating in a continuous regime in a closed loop at pilot scale.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.