Terroir 2010 banner
IVES 9 IVES Conference Series 9 The ability of wine yeasts fermenting by the addition of exogenous biotin

The ability of wine yeasts fermenting by the addition of exogenous biotin

Abstract

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion of new cultivation methods for increasing both the fermentative and conservation capacity.
The present article deals with the study of biotin activity on the biotechnological properties of the wine yeast.
Our results showed that addition of biotin can offer beneficial conditions for improving the fermentation, being also an important factor of stability for wine yeast Saccharomyces ellipsoideus.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Oprean Letitia, Tita Mihaela, Gaspar Eniko, Tita Cristina, Lengyel Ecaterina

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9 Sibiu, Romania

Contact the author

Keywords

 Biotin, Saccharomyces ellipsoideus, fermentation, physical and chemical conditions

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.