Terroir 2010 banner
IVES 9 IVES Conference Series 9 The ability of wine yeasts fermenting by the addition of exogenous biotin

The ability of wine yeasts fermenting by the addition of exogenous biotin

Abstract

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion of new cultivation methods for increasing both the fermentative and conservation capacity.
The present article deals with the study of biotin activity on the biotechnological properties of the wine yeast.
Our results showed that addition of biotin can offer beneficial conditions for improving the fermentation, being also an important factor of stability for wine yeast Saccharomyces ellipsoideus.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Tita Ovidiu, Oprean Letitia, Tita Mihaela, Gaspar Eniko, Tita Cristina, Lengyel Ecaterina

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9 Sibiu, Romania

Contact the author

Keywords

 Biotin, Saccharomyces ellipsoideus, fermentation, physical and chemical conditions

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).

TCA – A status report on South African cork closures

Cork taint decreases the commercial value of wine as tainted wines are rejected by consumers. Although other compounds in wine and cork can also be responsible for causing a taint, 2,4,6-trichloroanisole (TCA) is regarded as the primary cause of cork taint. As cork taint is often used in marketing campaigns against natural cork closures,

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.