Terroir 2010 banner
IVES 9 IVES Conference Series 9 La variabilità del colore in vini rosati dell’Italia meridionale

La variabilità del colore in vini rosati dell’Italia meridionale

Abstract

[English version below]

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.
Le caratteristiche cromatiche dei vini rosati si evidenziano attraverso un tenue colore rosa, a cui spesso si accompagnano riflessi viola o aranciati.
Gli antociani ed il pH sono i principali parametri del colore dei vini rossi e rosati, per cui sono stati considerati nella presente ricerca.
Gli antociani, in particolar modo, sono stati considerati nella qualità, quantità e nello stato di monomeri o combinati in cui si trovano nelle materie prime (uve), nei vini ed in alcuni di essi le evoluzioni ai quali vanno incontro durante lo stoccaggio a differenti temperature.
Con il presente lavoro, si è voluto dare un contributo di studio alle caratteristiche cromatiche dei più diffusi vini rosati che attualmente sono prodotti in alcuni territori dell’Italia meridionale, discuterle in base a come sono concepite dal vinificatore e come le gradirebbe il consumatore.

]]Colour is the first thing consumers notice in rosé wines. The more elegant it is, the more appealing the wine will be. Rosé wines are a soft shade of pink, often tinged with delicate hues of purple or orange. Anthocyanins and pH are the main determiners of colour and are therefore discussed in this paper, focussing in detail on the quality and quantity of the anthocyanins and whether they occur as monomers or polymers in the grapes and the wines. The evolution some anthocyanins undergo during storage at a range of temperatures has also been studied.

The paper aims to broaden knowledge on the chromatic characteristics of the more common rosé wines currently produced in southern Italy and discuss how the producers perceive their wines and how consumers would like them to be.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

R. Lovino, G. Ceci

C.R.A. – UTV Cantina Sperimentale di Barletta Via Vittorio Veneto,26 – 70051 Barletta – Italia

Contact the author

Keywords

uva, vino, colore, antociani
grape, wine, color, anthocyanins

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Grape seed powder as an alternative to bentonite for wine fining

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

VineAI: artificial intelligence for fungal disease

Early and accurate grapevine disease detection and surveillance are crucial for optimizing vineyard management practices.

Descriptive analysis of Sangiovese and Cabernet-Sauvignon wines from different terroirs in D.O.C. Bolgheri (Tuscany)

Different terroirs have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in 1993. Numerous preliminary observations suggested that wines obtained from these different terroirs were unique.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.