Terroir 2010 banner
IVES 9 IVES Conference Series 9 Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Abstract

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality of the vegetative material for a limited number of grape varieties. But choosing clonal selection as the unique propagation method has decreased considerably genetic diversity. In order to carry out the selection of clones in the future, a diversified background of genetic resources must be available. Institutional collections (conservatory) are not able to preserve sufficient biodiversity. Genetic resources could be conserved by winegrowers through mass selection. 5% of the total acreage planted in vine in Europe done by private mass selection would represent 1000 times the actual capacity of institutional collections. A methodology of private mass or clonal selection is proposed. An economic study shows that the overall extra-charge is 13000€ per hectare for mass selection plot and 69000 € per hectare for a clonal selection done by a private company. It is urgent to promote private selection in order to preserve vine biodiversity.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Roby J.P., de Resseguier L. and van Leeuwen C.

ENITA de Bordeaux – UMR EGFV – ISVV
1 Cours de Général de Gaulle, CS 40201, 33175 Gradignan cedex, France

Contact the author

Keywords

vine, genetic resources, clonal selection, mass selection, biodiversity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.