Terroir 2010 banner
IVES 9 IVES Conference Series 9 Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Abstract

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality of the vegetative material for a limited number of grape varieties. But choosing clonal selection as the unique propagation method has decreased considerably genetic diversity. In order to carry out the selection of clones in the future, a diversified background of genetic resources must be available. Institutional collections (conservatory) are not able to preserve sufficient biodiversity. Genetic resources could be conserved by winegrowers through mass selection. 5% of the total acreage planted in vine in Europe done by private mass selection would represent 1000 times the actual capacity of institutional collections. A methodology of private mass or clonal selection is proposed. An economic study shows that the overall extra-charge is 13000€ per hectare for mass selection plot and 69000 € per hectare for a clonal selection done by a private company. It is urgent to promote private selection in order to preserve vine biodiversity.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Roby J.P., de Resseguier L. and van Leeuwen C.

ENITA de Bordeaux – UMR EGFV – ISVV
1 Cours de Général de Gaulle, CS 40201, 33175 Gradignan cedex, France

Contact the author

Keywords

vine, genetic resources, clonal selection, mass selection, biodiversity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy.

Effect of plant fining agents in the must flotation process. Functional characterization

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol.

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.